Weed detection by analysis of multispectral images acquired under uncontrolled illumination conditions

被引:3
|
作者
Amziane, A. [1 ]
Losson, O. [1 ]
Mathon, B. [1 ]
Macaire, L. [1 ]
Dumenil, A. [2 ]
机构
[1] Univ Lille, CNRS, Cent Lille, UMR 9189,CRIStAL,Ctr Rech Informat Signal & Autom, F-59000 Lille, France
[2] Chambre Agr Somme, F-80090 Amiens, France
关键词
Multispectral imaging; Crop/weed detection and identification; Reflectance; Segmentation; Supervised pixel classification; CROP;
D O I
10.1117/12.2586823
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Localized weed control is one of the promising solutions to improve the application of herbicides in crop fields. To target weeds exclusively during the spray, their location in the field must be accurately determined. As weeds have colorimetric properties similar to crops, their detection may be difficult especially under varying illumination conditions. Among available technologies, multispectral cameras provide radiance images with a high spectral resolution allowing for the analysis of vegetation signatures beyond the visible and near infrared domains. In this study, we address the problem of outdoor weed detection and identification using multispectral and RGB-NIR imaging.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions
    Tenenhaus, Arthur
    Nkengne, Alex
    Horn, Jean-Francois
    Serruys, Camille
    Giron, Alain
    Fertil, Bernard
    SKIN RESEARCH AND TECHNOLOGY, 2010, 16 (01) : 85 - 97
  • [2] Multispectral camera as spatio-spectrophotometer under uncontrolled illumination
    Khan, Haris Ahmad
    Thomas, Jean-Baptiste
    Hardeberg, Jon Yngve
    Laligant, Olivier
    OPTICS EXPRESS, 2019, 27 (02): : 1051 - 1070
  • [3] Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination
    Jeon, Hong Y.
    Tian, Lei F.
    Zhu, Heping
    SENSORS, 2011, 11 (06) : 6270 - 6283
  • [4] Frame-based reflectance estimation from multispectral images for weed identification in varying illumination conditions
    Amziane, Anis
    Losson, Olivier
    Mathon, Benjamin
    Dumenil, Aurelien
    Macaire, Ludovic
    2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [5] Skin detection in video under uncontrolled illumination
    Biplab Ketan Chakraborty
    M. K. Bhuyan
    Karl F. MacDorman
    Multimedia Tools and Applications, 2021, 80 : 24319 - 24341
  • [6] Skin detection in video under uncontrolled illumination
    Chakraborty, Biplab Ketan
    Bhuyan, M. K.
    MacDorman, Karl F.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24319 - 24341
  • [7] The use of early season multispectral images for weed detection in corn
    Armstrong, Jon-Joseph Q.
    Dirks, Richard D.
    Gibson, Kevin D.
    WEED TECHNOLOGY, 2007, 21 (04) : 857 - 862
  • [8] Detection of weed species in soybean using multispectral digital images
    Gibson, KD
    Dirks, R
    Medlin, CR
    Johnston, L
    WEED TECHNOLOGY, 2004, 18 (03) : 742 - 749
  • [9] Improving in-row weed detection in multispectral stereoscopic images
    Piron, A.
    Leemans, V.
    Lebeau, F.
    Destain, M. -F.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 69 (01) : 73 - 79
  • [10] Soil Surface Texture Classification Using RGB Images Acquired Under Uncontrolled Field Conditions
    Babalola, Ekunayo-Oluwabami
    Asad, Muhammad H. H.
    Bais, Abdul
    IEEE ACCESS, 2023, 11 : 67140 - 67155