Diversity in Genetic Algorithms in the Generation of School Schedules

被引:0
|
作者
Moreno Martinez, Alejandro [1 ]
Landassuri Moreno, Victor Manuel [1 ]
Lopez Chau, Asdrnbal [2 ]
Morales Escobar, Saturnino Job [1 ]
机构
[1] Ctr Univ UAEM Valle De Mexico, Blvd Univ S-N, Atizapan De Zaragoza 54500, Estado De Mexic, Mexico
[2] Ctr Univ UAEM Valle De Zumpango, Zumpango De Ocampo 55600, Mexico
来源
关键词
Genetic Algorithms; School Schedules; Timetabling; Diversity;
D O I
10.1007/978-3-031-62836-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Timetabling task is classified as a NP-complete problem; therefore, several constrains must be adjusted to generate valid timetables. In this type of problem, it is well known that the complexity of this task grows exponentially with the increasing number of variables and range of values, making it unfeasible to design schedules manually. Given their effectiveness in tackling large search spaces, Genetic Algorithms (GA) have emerged as a promising tool for addressing the Timetabling problem. Thus, an important aspect of GA is to maintain diversity among individuals during evolution, aiming to converge to an optimal solution efficiently. Therefore, this study focuses on exploring similarity techniques to measure diversity in order to improve GA individuals in timetabling generation. The obtained results demonstrate the population's evaluation performance, indicating higher accuracy with Jaccard similarity and faster evaluation with Hamming distance.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 50 条
  • [41] Preserving and Exploiting Genetic Diversity in Evolutionary Programming Algorithms
    Chen, Gang
    Low, Chor Ping
    Yang, Zhonghua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) : 661 - 673
  • [42] Using Disruptive Selection to Maintain Diversity in Genetic Algorithms
    Ting Kuo
    Shu-Yuen Hwang
    Applied Intelligence, 1997, 7 : 257 - 267
  • [43] Emergence of Diversity and Its Benefits for Crossover in Genetic Algorithms
    Duc-Cuong Dang
    Friedrich, Tobias
    Koetzing, Timo
    Krejca, Martin S.
    Lehre, Per Kristian
    Oliveto, Pietro S.
    Sudholt, Dirk
    Sutton, Andrew M.
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 890 - 900
  • [44] Optimal schedules for annealing algorithms
    Barzegar, Amin
    Hamze, Firas
    Amey, Christopher
    Machta, Jonathan
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [45] Generation of Campylobacter jejuni genetic diversity in vivo
    de Boer, P
    Wagenaar, JA
    Achterberg, RP
    van Putten, JPM
    Schouls, LM
    Duim, B
    MOLECULAR MICROBIOLOGY, 2002, 44 (02) : 351 - 359
  • [46] Collective Schedules: Axioms and Algorithms
    Durand, Martin
    Pascual, Fanny
    ALGORITHMIC GAME THEORY, SAGT 2022, 2022, 13584 : 454 - 471
  • [47] Towards Optimized Schedules for Charging Electric Vehicles on Austrian Highways using Genetic Algorithms
    Stippel, Christian
    Schwendinger, Benjamin
    Kammerhofer, Michael
    Hoch, Ralph
    Kaindl, Hermann
    Sauter, Thilo
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 767 - 770
  • [48] A comparison of dispatching rules and genetic algorithms for job shop schedules of standard hydraulic cylinders
    Ikno Kim
    Junzo Watada
    Ichiro Shigaki
    Soft Computing, 2008, 12 : 121 - 128
  • [49] Optimal preventive maintenance schedules using specific genetic algorithms and probabilistic graphical model
    Ayadi, I.
    Bouillaut, L.
    Aknin, P.
    Siarry, P.
    ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 901 - 909
  • [50] Searching of Optimal Vaccination Schedules Application of Genetic Algorithms to Approach the Problem in Cancer Immunoprevention
    Pennisi, Marzio Alfio
    Pappalardo, Francesco
    Zhang, Ping
    Motta, Santo
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2009, 28 (04): : 67 - 72