Diversity in Genetic Algorithms in the Generation of School Schedules

被引:0
|
作者
Moreno Martinez, Alejandro [1 ]
Landassuri Moreno, Victor Manuel [1 ]
Lopez Chau, Asdrnbal [2 ]
Morales Escobar, Saturnino Job [1 ]
机构
[1] Ctr Univ UAEM Valle De Mexico, Blvd Univ S-N, Atizapan De Zaragoza 54500, Estado De Mexic, Mexico
[2] Ctr Univ UAEM Valle De Zumpango, Zumpango De Ocampo 55600, Mexico
来源
关键词
Genetic Algorithms; School Schedules; Timetabling; Diversity;
D O I
10.1007/978-3-031-62836-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Timetabling task is classified as a NP-complete problem; therefore, several constrains must be adjusted to generate valid timetables. In this type of problem, it is well known that the complexity of this task grows exponentially with the increasing number of variables and range of values, making it unfeasible to design schedules manually. Given their effectiveness in tackling large search spaces, Genetic Algorithms (GA) have emerged as a promising tool for addressing the Timetabling problem. Thus, an important aspect of GA is to maintain diversity among individuals during evolution, aiming to converge to an optimal solution efficiently. Therefore, this study focuses on exploring similarity techniques to measure diversity in order to improve GA individuals in timetabling generation. The obtained results demonstrate the population's evaluation performance, indicating higher accuracy with Jaccard similarity and faster evaluation with Hamming distance.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 50 条
  • [21] A model for development of optimized feeder routes and coordinated schedules - A genetic algorithms approach
    Shrivastava, Prabhat
    O'Mahony, Margaret
    TRANSPORT POLICY, 2006, 13 (05) : 413 - 425
  • [22] Using Genetic Algorithms in Mathematical Modeling of Optimal Radiation Therapy Schedules for GBM
    Hathout, L.
    Shamma, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E73 - E73
  • [23] A multi-criteria genetic algorithm for the generation of job rotation schedules
    Diego-Mas, J. A.
    Asensio-Cuesta, S.
    Sanchez-Romero, M. A.
    Artacho-Ramirez, M. A.
    INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 2009, 39 (01) : 23 - 33
  • [24] Generation of trading strategies using genetic algorithms
    Chen, JS
    Deng, SX
    Lin, PC
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : A921 - A924
  • [25] Genetic algorithms for dynamic test data generation
    Michael, CC
    McGraw, GE
    Schatz, MA
    Walton, CC
    AUTOMATED SOFTWARE ENGINEERING, 12TH IEEE INTERNATIONAL CONFERENCE, PROCEEDINGS, 1997, : 307 - 308
  • [26] Systolic random number generation for genetic algorithms
    Bland, IM
    Megson, GM
    ELECTRONICS LETTERS, 1996, 32 (12) : 1069 - 1070
  • [27] Genetic algorithms in test generation for digital circuits
    Skobtsov, YA
    Ivanov, DE
    Skobtsov, VY
    Zakusilo, SA
    BEC 2002: PROCEEDINGS OF THE 8TH BIENNIAL BALTIC ELECTRONIC CONFERENCE, 2002, : 291 - 294
  • [28] Properties of Genetic Algorithms for Automated Algebras Generation
    Habiballa, Hashim
    Hires, Matej
    Jendryscik, Radek
    ARTIFICIAL INTELLIGENCE TRENDS IN INTELLIGENT SYSTEMS, CSOC2017, VOL 1, 2017, 573 : 424 - 433
  • [29] Novelty in the generation of initial population for genetic algorithms
    Karci, A
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2004, 3214 : 268 - 275
  • [30] The Use of Genetic Algorithms for Cryptographic Keys Generation
    Turčaník M.
    Javurek M.
    Studies in Big Data, 2021, 84 : 315 - 324