Human Pose Estimation and Gait Analysis with Convolutional Neural Networks for Alzheimer's Disease Detection

被引:0
|
作者
Seifallahi, Mahmoud [1 ]
Farrell, Brennen [1 ]
Galvin, James E. [2 ]
Ghoraani, Behnaz [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
[2] Univ Miami, Comprehens Ctr Brain Hlth, Dept Neurol, Boca Raton, FL 33133 USA
基金
美国国家科学基金会;
关键词
Human pose estimation (HPE); Alzheimer's disease (AD) detection; Convolutional neural networks (CNN); OpenPose; Gait analysis;
D O I
10.1117/12.3013776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computer vision, human pose estimation (HPE) through convolutional neural networks (CNNs) has emerged as a promising avenue with broad applicability. This study bridges a novel application of HPE, targeting the early detection of Alzheimer's disease (AD), a condition expected to affect roughly 13.4 million Americans by 2026. Traditionally, AD diagnostic methodologies like brain imaging, Electroencephalography, and blood/neuropsychological tests are not only expensive and protracted but also require specialized medical expertise. Addressing these constraints, we introduce a cost-efficient and universally accessible system to detect AD, harnessing conventional cameras and employing pose estimation, signal processing, and machine learning. Data was sourced from videos capturing a 10-meter curve walk of 73 cognitively healthy older adults (HC) and 34 AD patients. The recording apparatus was a camera offering a resolution of 1920x1080 pixels at 30 frames/second, stationed laterally to the walking path. Using OpenPose, a state-of-the-art, bottom-up multi-person HPE method based on CNNs, we derived 25 distinctive body joint coordinates from the footage. Subsequently, 48 gait parameters were extracted from these joints and subjected to statistical scrutiny. A noticeable difference was observed in 39 out of the 48 gait parameters between the HC and AD groups. Leveraging a Support Vector Machine (SVM) to classify the data, the distinctiveness of these gait markers was further affirmed. The system accomplished a commendable accuracy rate of 90.01% and an F-score of 86.20% for AD identification. In essence, our findings advocate that the amalgamation of everyday cameras, sophisticated HPE techniques, signal processing, and machine learning can pave the way for practical AD detection in non-specialized settings, including home environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Human Pose Estimation Using Convolutional Neural Networks
    Singh, Anubhav
    Agarwal, Shruti
    Nagrath, Preeti
    Saxena, Anmol
    Thakur, Narina
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 946 - 952
  • [2] Convolutional neural networks for Alzheimer's disease detection on MRI images
    Ebrahimi, Amir
    Luo, Suhuai
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (02)
  • [3] On the design of convolutional neural networks for automatic detection of Alzheimer's disease
    Liu, Sheng
    Yadav, Chhavi
    Fernandez-Granda, Carlos
    Razavian, Narges
    MACHINE LEARNING FOR HEALTH WORKSHOP, VOL 116, 2019, 116 : 184 - 201
  • [4] Ensemble convolutional neural networks for pose estimation
    Kawana, Yuki
    Ukita, Norimichi
    Huang, Jia-Bin
    Yang, Ming-Hsuan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 169 : 62 - 74
  • [5] Real-time Human Pose Estimation with Convolutional Neural Networks
    Linna, Marko
    Kannala, Juho
    Rahtu, Esa
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 335 - 342
  • [6] Alzheimer's disease detection using depthwise separable convolutional neural networks
    Liu, Junxiu
    Li, Mingxing
    Luo, Yuling
    Yang, Su
    Li, Wei
    Bi, Yifei
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 203
  • [7] Human Pose Estimation-Based Real-Time Gait Analysis Using Convolutional Neural Network
    Rohan, Ali
    Rabah, Mohammed
    Hosny, Tarek
    Kim, Sung-Ho
    IEEE ACCESS, 2020, 8 : 191542 - 191550
  • [8] Driver pose estimation using convolutional neural networks
    Chen, Ren-Wen
    Yuan, Ting-Ting
    Huang, Wen-Bin
    Zhang, Yu-Xiang
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (04): : 813 - 821
  • [9] Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson's disease patients
    Xia, Yi
    Zhang, Jun
    Ye, Qiang
    Cheng, Nan
    Lu, Yixiang
    Zhang, Dexiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 46 : 221 - 230
  • [10] GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR ALZHEIMER'S DISEASE CLASSIFICATION
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Jacobs, Heidi
    El Fakhri, Georges
    Li, Quanzheng
    Johnson, Keith
    Dutta, Joyita
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 414 - 417