Convolutional neural networks for Alzheimer's disease detection on MRI images

被引:41
|
作者
Ebrahimi, Amir [1 ]
Luo, Suhuai [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp, Callaghan, NSW, Australia
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
deep learning; convolutional neural network; Alzheimer's disease; magnetic resonance imaging; transfer learning; MILD COGNITIVE IMPAIRMENT; CLASSIFICATION;
D O I
10.1117/1.JMI.8.2.024503
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Detection of Alzheimer's disease (AD) on magnetic resonance imaging (MRI) using convolutional neural networks (CNNs), which is useful for detecting AD in its preliminary states. Approach: Our study implements and compares several deep models and configurations, including two-dimensional (2D) and three-dimensional (3D) CNNs and recurrent neural networks (RNNs). To use a 2D CNN on 3D MRI volumes, each MRI scan is split into 2D slices, neglecting the connection among 2D image slices in an MRI volume. Instead, a CNN model could be followed by an RNN in a way that the model of 2D CNN + RNN can understand the connection among sequences of 2D image slices for an MRI. The issue is that the feature extraction step in the 2D CNN is independent of classification in the RNN. To tackle this, 3D CNNs can be employed instead of 2D CNNs to make voxel-based decisions. Our study's main contribution is to introduce transfer learning from a dataset of 2D images to 3D CNNs. Results: The results on our MRI dataset indicate that sequence-based decisions improve the accuracy of slice-based decisions by 2% in classifying AD patients from healthy subjects. Also the 3D voxel-based method with transfer learning outperforms the other methods with 96.88% accuracy, 100% sensitivity, and 94.12% specificity. Conclusions: Several implementations and experiments using CNNs on MRI scans for AD detection demonstrated that the voxel-based method with transfer learning from ImageNet to MRI datasets using 3D CNNs considerably improved the results compared with the others. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Convolutional Neural Networks for Early Detection and Classification of Alzheimer's disease from MRI Images
    Mane, Pranoti Prashant
    Dixit, Rohit R.
    Dewangan, Omprakash
    Kalavadekar, Prakash
    Joshi, Sagar V.
    Swarnkar, Suman Kumar
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 654 - 662
  • [2] Application of Convolutional Neural Networks for Early Detection and Classification of Alzheimer's disease from MRI Images
    Swarnkar, Suman Kumar
    Jhapte, Rajkumar
    Guru, Abhishek
    Pandey, Ashutosh
    Prajapati, Tamanna
    Jagadeesan, P.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 645 - 653
  • [3] Alzheimer’s Disease Detection in MRI images using Deep Convolutional Neural Network Model
    Naganandhini S.
    Shanmugavadivu P.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [4] A Modified Convolutional Neural Networks For MRI-based Images For Detection and Stage Classification Of Alzheimer Disease
    Alshammari, Majdah
    Mezher, Mohammad
    2021 IEEE NATIONAL COMPUTING COLLEGES CONFERENCE (NCCC 2021), 2021, : 41 - 47
  • [5] PRIOR DETECTION OF ALZHEIMER'S DISEASE WITH THE AID OF MRI IMAGES AND DEEP NEURAL NETWORKS
    Karthik, S. A.
    PriyaNandihal
    Seemanthini, K.
    Manjunath, D. R.
    Liyakathunisa
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2022, : 16 - 28
  • [6] On the design of convolutional neural networks for automatic detection of Alzheimer's disease
    Liu, Sheng
    Yadav, Chhavi
    Fernandez-Granda, Carlos
    Razavian, Narges
    MACHINE LEARNING FOR HEALTH WORKSHOP, VOL 116, 2019, 116 : 184 - 201
  • [7] Applying Convolutional Neural Networks for Pre-detection of Alzheimer's Disease from Structural MRI data
    Gunawardena, K. A. N. N. P.
    Rajapakse, R. N.
    Kodikara, N. D.
    2017 24TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2017, : 173 - 179
  • [8] Alzheimer's disease detection using depthwise separable convolutional neural networks
    Liu, Junxiu
    Li, Mingxing
    Luo, Yuling
    Yang, Su
    Li, Wei
    Bi, Yifei
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 203
  • [9] Classification of Alzheimer's Disease by Cascaded Convolutional Neural Networks Using PET Images
    Cheng, Danni
    Liu, Manhua
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 106 - 113
  • [10] Convolutional neural networks for multi-class brain disease detection using MRI images
    Talo, Muhammed
    Yildirim, Ozal
    Baloglu, Ulas Baran
    Aydin, Galip
    Acharya, U. Rajendra
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 78