Human Pose Estimation and Gait Analysis with Convolutional Neural Networks for Alzheimer's Disease Detection

被引:0
|
作者
Seifallahi, Mahmoud [1 ]
Farrell, Brennen [1 ]
Galvin, James E. [2 ]
Ghoraani, Behnaz [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
[2] Univ Miami, Comprehens Ctr Brain Hlth, Dept Neurol, Boca Raton, FL 33133 USA
基金
美国国家科学基金会;
关键词
Human pose estimation (HPE); Alzheimer's disease (AD) detection; Convolutional neural networks (CNN); OpenPose; Gait analysis;
D O I
10.1117/12.3013776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computer vision, human pose estimation (HPE) through convolutional neural networks (CNNs) has emerged as a promising avenue with broad applicability. This study bridges a novel application of HPE, targeting the early detection of Alzheimer's disease (AD), a condition expected to affect roughly 13.4 million Americans by 2026. Traditionally, AD diagnostic methodologies like brain imaging, Electroencephalography, and blood/neuropsychological tests are not only expensive and protracted but also require specialized medical expertise. Addressing these constraints, we introduce a cost-efficient and universally accessible system to detect AD, harnessing conventional cameras and employing pose estimation, signal processing, and machine learning. Data was sourced from videos capturing a 10-meter curve walk of 73 cognitively healthy older adults (HC) and 34 AD patients. The recording apparatus was a camera offering a resolution of 1920x1080 pixels at 30 frames/second, stationed laterally to the walking path. Using OpenPose, a state-of-the-art, bottom-up multi-person HPE method based on CNNs, we derived 25 distinctive body joint coordinates from the footage. Subsequently, 48 gait parameters were extracted from these joints and subjected to statistical scrutiny. A noticeable difference was observed in 39 out of the 48 gait parameters between the HC and AD groups. Leveraging a Support Vector Machine (SVM) to classify the data, the distinctiveness of these gait markers was further affirmed. The system accomplished a commendable accuracy rate of 90.01% and an F-score of 86.20% for AD identification. In essence, our findings advocate that the amalgamation of everyday cameras, sophisticated HPE techniques, signal processing, and machine learning can pave the way for practical AD detection in non-specialized settings, including home environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Benchmarking Convolutional Neural Networks for Object Segmentation and Pose Estimation
    Le, Tiffany
    Hamilton, Lei
    Torralba, Antonio
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [22] Grasping Pose Estimation for Robots Based on Convolutional Neural Networks
    Zheng, Tianjiao
    Wang, Chengzhi
    Wan, Yanduo
    Zhao, Sikai
    Zhao, Jie
    Shan, Debin
    Zhu, Yanhe
    MACHINES, 2023, 11 (10)
  • [23] The promise of convolutional neural networks for the early diagnosis of the Alzheimer?s disease
    Erdogmus, Pakize
    Kabakus, Abdullah Talha
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [24] Early Diagnosis of Alzheimer's Disease Based on Convolutional Neural Networks
    Mehmood, Atif
    Abugabah, Ahed
    AlZubi, Ahmed Ali
    Sanzogni, Louis
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 43 (01): : 305 - 315
  • [25] Gait Analysis and Detection of Human Pose Diseases
    Balti, Ala
    Ben Khelifa, Mohamed Moncef
    Ben Hassine, Slim
    Ouazaa, Hibet-Allah
    Abid, Saber
    Lakhoua, Mohamed Najeh
    Sayadi, Mounir
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1381 - 1386
  • [26] Using Deep Neural Networks for Human Fall Detection Based on Pose Estimation
    Salimi, Mohammadamin
    Machado, Jose J. M.
    Tavares, Joao Manuel R. S.
    SENSORS, 2022, 22 (12)
  • [27] Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer’s disease diagnosis
    Aojie Li
    Fan Li
    Farzaneh Elahifasaee
    Manhua Liu
    Lichi Zhang
    Brain Imaging and Behavior, 2021, 15 : 2330 - 2339
  • [28] Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis
    Li, Aojie
    Li, Fan
    Elahifasaee, Farzaneh
    Liu, Manhua
    Zhang, Lichi
    BRAIN IMAGING AND BEHAVIOR, 2021, 15 (05) : 2330 - 2339
  • [29] Real-time human pose estimation on a smart walker using convolutional neural networks
    Palermo, Manuel
    Moccia, Sara
    Migliorelli, Lucia
    Frontoni, Emanuele
    Santos, Cristina P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [30] Detection of Alzheimer's Disease Using Deep Convolutional Neural Network
    Kaur, Swapandeep
    Gupta, Sheifali
    Singh, Swati
    Gupta, Isha
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (03)