Saving Memory Space in Deep Neural Networks by Recomputing: A Survey

被引:0
|
作者
Ulidowski, Irek [1 ,2 ]
机构
[1] Univ Leicester, Sch Comp & Math Sci, Leicester, Leics, England
[2] AGH Univ Sci & Technol, Dept Appl Informat, Krakow, Poland
来源
关键词
Deep Neural Networks; recomputing activations;
D O I
10.1007/978-3-031-38100-3_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Training a multilayered neural network involves execution of the network on the training data, followed by calculating the error between the predicted and actual output, and then performing backpropagation to update the network's weights in order to minimise the overall error. This process is repeated many times, with the network updating its weights until it produces the desired output with a satisfactory level of accuracy. It requires storage in memory of activation and gradient data for each layer during each training run of the network. This paper surveys the main approaches to recomputing the needed activation and gradient data instead of storing it in memory. We discuss how these approaches relate to reversible computation techniques.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 50 条
  • [41] Using deep neural networks to explore chemical space
    Vogt, Martin
    EXPERT OPINION ON DRUG DISCOVERY, 2022, 17 (03) : 297 - 304
  • [42] Face Space Representations in Deep Convolutional Neural Networks
    O'Toole, Alice J.
    Castillo, Carlos D.
    Parde, Connor J.
    Hill, Matthew Q.
    Chellappa, Rama
    TRENDS IN COGNITIVE SCIENCES, 2018, 22 (09) : 794 - 809
  • [43] Space Efficient Quantization for Deep Convolutional Neural Networks
    Dong-Di Zhao
    Fan Li
    Kashif Sharif
    Guang-Min Xia
    Yu Wang
    Journal of Computer Science and Technology, 2019, 34 : 305 - 317
  • [44] State-Space Representations of Deep Neural Networks
    Hauser, Michael
    Gunn, Sean
    Saab, Samer, Jr.
    Ray, Asok
    NEURAL COMPUTATION, 2019, 31 (03) : 538 - 554
  • [45] An MRAM-based Deep In-Memory Architecture for Deep Neural Networks
    Patil, Ameya D.
    Hua, Haocheng
    Gonugondla, Sujan
    Kang, Mingu
    Shanbhag, Naresh R.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [46] A survey of spintronic architectures for processing-in-memory and neural networks
    Umesh, Sumanth
    Mittal, Sparsh
    JOURNAL OF SYSTEMS ARCHITECTURE, 2019, 97 (349-372) : 349 - 372
  • [47] Optimizing Memory Efficiency for Deep Convolutional Neural Networks on GPUs
    Li, Chao
    Yang, Yi
    Feng, Min
    Chakradhar, Srimat
    Zhou, Huiyang
    SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2016, : 633 - 644
  • [48] Flash Memory Array for Efficient Implementation of Deep Neural Networks
    Han, Runze
    Xiang, Yachen
    Huang, Peng
    Shan, Yihao
    Liu, Xiaoyan
    Kang, Jinfeng
    ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (05)
  • [49] Dataflow Restructuring for Active Memory Reduction in Deep Neural Networks
    Cipolletta, Antonio
    Calimera, Andrea
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 114 - 119
  • [50] A survey on face data augmentation for the training of deep neural networks
    Xiang Wang
    Kai Wang
    Shiguo Lian
    Neural Computing and Applications, 2020, 32 : 15503 - 15531