Saving Memory Space in Deep Neural Networks by Recomputing: A Survey

被引:0
|
作者
Ulidowski, Irek [1 ,2 ]
机构
[1] Univ Leicester, Sch Comp & Math Sci, Leicester, Leics, England
[2] AGH Univ Sci & Technol, Dept Appl Informat, Krakow, Poland
来源
关键词
Deep Neural Networks; recomputing activations;
D O I
10.1007/978-3-031-38100-3_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Training a multilayered neural network involves execution of the network on the training data, followed by calculating the error between the predicted and actual output, and then performing backpropagation to update the network's weights in order to minimise the overall error. This process is repeated many times, with the network updating its weights until it produces the desired output with a satisfactory level of accuracy. It requires storage in memory of activation and gradient data for each layer during each training run of the network. This paper surveys the main approaches to recomputing the needed activation and gradient data instead of storing it in memory. We discuss how these approaches relate to reversible computation techniques.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 50 条
  • [31] A survey on parallel training algorithms for deep neural networks
    Yook, Dongsuk
    Lee, Hyowon
    Yoo, In-Chul
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2020, 39 (06): : 505 - 514
  • [32] Survey on Deep Neural Networks in Speech and Vision Systems
    Alam, M.
    Samad, M. D.
    Vidyaratne, L.
    Glandon, A.
    Iftekharuddin, K. M.
    NEUROCOMPUTING, 2020, 417 : 302 - 321
  • [33] Efficient Processing of Deep Neural Networks: A Tutorial and Survey
    Sze, Vivienne
    Chen, Yu-Hsin
    Yang, Tien-Ju
    Emer, Joel S.
    PROCEEDINGS OF THE IEEE, 2017, 105 (12) : 2295 - 2329
  • [34] Survey of Deep Learning Neural Networks Implementation on FPGAs
    Tourad, El Hadrami Cheikh
    Eleuldj, Mohsine
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 137 - 144
  • [35] A Survey on Leveraging Deep Neural Networks for Object Tracking
    Krebs, Sebastian
    Duraisamy, Bharanidhar
    Flohr, Fabian
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [36] A survey of the recent architectures of deep convolutional neural networks
    Khan, Asifullah
    Sohail, Anabia
    Zahoora, Umme
    Qureshi, Aqsa Saeed
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) : 5455 - 5516
  • [37] Exploring the Design Space of Efficient Deep Neural Networks
    Yu, Fuxun
    Stamoulis, Dimitrios
    Wang, Di
    Lymberopoulos, Dimitrios
    Chen, Xiang
    2020 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC 2020), 2020, : 317 - 318
  • [38] Space Efficient Quantization for Deep Convolutional Neural Networks
    Zhao, Dong-Di
    Li, Fan
    Sharif, Kashif
    Xia, Guang-Min
    Wang, Yu
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2019, 34 (02) : 305 - 317
  • [39] Space Object Classification using Deep Neural Networks
    Jia, Bin
    Pham, Khanh D.
    Blasch, Erik
    Wang, Zhonghai
    Shen, Dan
    Chen, Genshe
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [40] Chemical space exploration guided by deep neural networks
    Karlov, Dmitry S.
    Sosnin, Sergey
    Tetko, Igor V.
    Fedorov, Maxim V.
    RSC ADVANCES, 2019, 9 (09) : 5151 - 5157