Saving Memory Space in Deep Neural Networks by Recomputing: A Survey

被引:0
|
作者
Ulidowski, Irek [1 ,2 ]
机构
[1] Univ Leicester, Sch Comp & Math Sci, Leicester, Leics, England
[2] AGH Univ Sci & Technol, Dept Appl Informat, Krakow, Poland
来源
关键词
Deep Neural Networks; recomputing activations;
D O I
10.1007/978-3-031-38100-3_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Training a multilayered neural network involves execution of the network on the training data, followed by calculating the error between the predicted and actual output, and then performing backpropagation to update the network's weights in order to minimise the overall error. This process is repeated many times, with the network updating its weights until it produces the desired output with a satisfactory level of accuracy. It requires storage in memory of activation and gradient data for each layer during each training run of the network. This paper surveys the main approaches to recomputing the needed activation and gradient data instead of storing it in memory. We discuss how these approaches relate to reversible computation techniques.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 50 条
  • [1] In-depth Survey of Processing-in-memory Architectures for Deep Neural Networks
    Jang, Ji-Hoon
    Shin, Jin
    Park, Jun-Tae
    Hwang, In-Seong
    Kim, Hyun
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2023, 23 (05) : 322 - 339
  • [2] A survey on the applications of Deep Neural Networks
    Latha, R. S.
    Sreekanth, G. R. R.
    Suganthe, R. C.
    Selvaraj, R. Esakki
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [3] A survey of uncertainty in deep neural networks
    Gawlikowski, Jakob
    Tassi, Cedrique Rovile Njieutcheu
    Ali, Mohsin
    Lee, Jongseok
    Humt, Matthias
    Feng, Jianxiang
    Kruspe, Anna
    Triebel, Rudolph
    Jung, Peter
    Roscher, Ribana
    Shahzad, Muhammad
    Yang, Wen
    Bamler, Richard
    Zhu, Xiao Xiang
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1513 - 1589
  • [4] A survey of uncertainty in deep neural networks
    Jakob Gawlikowski
    Cedrique Rovile Njieutcheu Tassi
    Mohsin Ali
    Jongseok Lee
    Matthias Humt
    Jianxiang Feng
    Anna Kruspe
    Rudolph Triebel
    Peter Jung
    Ribana Roscher
    Muhammad Shahzad
    Wen Yang
    Richard Bamler
    Xiao Xiang Zhu
    Artificial Intelligence Review, 2023, 56 : 1513 - 1589
  • [5] A Survey on Fuzzy Deep Neural Networks
    Das, Rangan
    Sen, Sagnik
    Maulik, Ujjwal
    ACM COMPUTING SURVEYS, 2020, 53 (03)
  • [6] Hyperbolic Deep Neural Networks: A Survey
    Peng, Wei
    Varanka, Tuomas
    Mostafa, Abdelrahman
    Shi, Henglin
    Zhao, Guoying
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10023 - 10044
  • [7] Survey on Testing of Deep Neural Networks
    Wang Z.
    Yan M.
    Liu S.
    Chen J.-J.
    Zhang D.-D.
    Wu Z.
    Chen X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (05): : 1255 - 1275
  • [8] Deep Neural Networks on Chip - A Survey
    Huo Yingge
    Ali, Imran
    Lee, Kang-Yoon
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 589 - 592
  • [9] Memory Saving Method for Enhanced Convolution of Deep Neural Network
    Li, Ling
    Tong, Yuqi
    Zhang, Hangyu
    Wan, Dayu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2018, : 185 - 188
  • [10] Recurrent Neural Networks and Their Memory Behavior: A Survey
    Su, Yuanhang
    Kuo, C. -C. Jay
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2022, 11 (01)