Joint Trajectory and Communication Optimization for Heterogeneous Vehicles in Maritime SAR: Multi-Agent Reinforcement Learning

被引:0
|
作者
Lei, Chengjia [1 ,2 ]
Wu, Shaohua [2 ,3 ]
Yang, Yi [2 ]
Xue, Jiayin [2 ]
Zhang, Qinyu [2 ,3 ]
机构
[1] Harbin Inst Technol, Dept Elect & Informat Engn, Shenzhen 518055, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Guangdong Prov Key Lab Aerosp Commun & Networking, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Maritime search and rescue (SAR); multi-agent reinforcement learning (MARL); efficiency; fault-tolerant communication; unmanned aerial vehicle (UAV); automatic surface vehicle (ASV); SEARCH; LEVEL;
D O I
10.1109/TVT.2024.3388499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nowadays, multiple types of equipment, including unmanned aerial vehicles (UAVs) and automatic surface vehicles (ASVs), have been deployed in maritime search and rescue (SAR). However, due to the lack of base stations (BSs), how to complete rescue while maintaining communication between vehicles is an unresolved challenge. In this paper, we design an efficient and fault-tolerant communication solution by jointly optimizing vehicles' trajectory, offloading scheduling, and routing topology for a heterogeneous vehicle system. First, we model several essential factors in maritime SAR, including the impact of ocean currents, the observational behavior of UAVs, the fault tolerance of relay networks, resource management of mobile edge computing (MEC), and energy consumption. A multi-objective optimization problem is formulated, aiming at minimizing time and energy consumption while increasing the fault tolerance of relay networks. Then, we transfer the objective into a decentralized partially observable Markov Decision Process (Dec-POMDP) and introduce multi-agent reinforcement learning (MARL) to search for a collaborative strategy. Specifically, two MARL approaches with different training styles are evaluated, and three techniques are added for improving performance, including sharing parameters, normalized generalized-advantage-estimation (GAE), and preserving-outputs-precisely-while-adaptively-rescaling-targets (Pop-Art). Experimental results demonstrate that our proposed approach, named heterogeneous vehicles multi-agent proximal policy optimization (HVMAPPO), outperforms other baselines in efficiency and fault tolerance of communication.
引用
收藏
页码:12328 / 12344
页数:17
相关论文
共 50 条
  • [21] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [22] Improving coordination with communication in multi-agent reinforcement learning
    Szer, D
    Charpillet, F
    ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 436 - 440
  • [23] Multi-Agent Reinforcement Learning for Coordinating Communication and Control
    Mason, Federico
    Chiariotti, Federico
    Zanella, Andrea
    Popovski, Petar
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (04) : 1566 - 1581
  • [24] Universally Expressive Communication in Multi-Agent Reinforcement Learning
    Morris, Matthew
    Barrett, Thomas D.
    Pretorius, Arnu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Low Entropy Communication in Multi-Agent Reinforcement Learning
    Yu, Lebin
    Qiu, Yunbo
    Wang, Qiexiang
    Zhang, Xudong
    Wang, Jian
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5173 - 5178
  • [26] Multi-agent reinforcement learning based on local communication
    Wenxu Zhang
    Lei Ma
    Xiaonan Li
    Cluster Computing, 2019, 22 : 15357 - 15366
  • [27] Biases for Emergent Communication in Multi-agent Reinforcement Learning
    Eccles, Tom
    Bachrach, Yoram
    Lever, Guy
    Lazaridou, Angeliki
    Graepel, Thore
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [28] A Survey on Multi-Agent Reinforcement Learning Applications in the Internet of Vehicles
    Mianji, Elham Mohammadzadeh
    Fardad, Mohammad
    Muntean, Gabriel-Miro
    Tal, Irina
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [29] A study on multi-agent reinforcement learning for autonomous distribution vehicles
    Serap Ergün
    Iran Journal of Computer Science, 2023, 6 (4) : 297 - 305
  • [30] Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles
    Kwon, Dohyun
    Kim, Joongheon
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,