Strength of 2D glasses explored by machine-learning force fields

被引:2
|
作者
Shi, Pengjie [1 ]
Xu, Zhiping [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; 2-DIMENSIONAL SILICA GLASS; CRACK-PROPAGATION; FRACTURE; GRAPHENE;
D O I
10.1063/5.0215663
中图分类号
O59 [应用物理学];
学科分类号
摘要
The strengths of glasses are intricately linked to their atomic-level heterogeneity. Atomistic simulations are frequently used to investigate the statistical physics of this relationship, compensating for the limited spatiotemporal resolution in experimental studies. However, theoretical insights are limited by the complexity of glass structures and the accuracy of the interatomic potentials used in simulations. Here, we investigate the strengths and fracture mechanisms of 2D silica, with all structural units accessible to direct experimental observation. We develop a neural network force field for fracture based on the deep potential-smooth edition framework. Representative atomic structures across crystals, nanocrystalline, paracrystalline, and continuous random network glasses are studied. We find that the virials or bond lengths control the initialization of bond-breaking events, creating nanoscale voids in the vitreous network. However, the voids do not necessarily lead to crack propagation due to a disorder-trapping effect, which is stronger than the lattice-trapping effect in a crystalline lattice, and occurs over larger length and time scales. Fracture initiation proceeds with void growth and coalescence and advances through a bridging mechanism. The fracture patterns are shaped by subsequent trapping and cleavage steps, often guided by voids forming ahead of the crack tip. These heterogeneous processes result in atomically smooth facets in crystalline regions and rough, amorphous edges in the glassy phase. These insights into 2D crystals and glasses, both sharing SiO2 chemistry, highlight the pivotal role of atomic-level structures in determining fracture kinetics and crack path selection in materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Superior performance of the machine-learning GAP force field for fullerene structures
    Aghajamali, Alireza
    Karton, Amir
    STRUCTURAL CHEMISTRY, 2022, 33 (02) : 505 - 510
  • [32] When Machine Learning Meets 2D Materials: A Review
    Lu, Bin
    Xia, Yuze
    Ren, Yuqian
    Xie, Miaomiao
    Zhou, Liguo
    Vinai, Giovanni
    Morton, Simon A.
    Wee, Andrew T. S.
    van der Wiel, Wilfred G.
    Zhang, Wen
    Wong, Ping Kwan Johnny
    ADVANCED SCIENCE, 2024, 11 (13)
  • [33] Exploring and machine learning structural instabilities in 2D materials
    Simone Manti
    Mark Kamper Svendsen
    Nikolaj R. Knøsgaard
    Peder M. Lyngby
    Kristian S. Thygesen
    npj Computational Materials, 9
  • [34] Full interpretable machine learning in 2D with inline coordinates
    Kovalerchuk, Boris
    Phan, Hoang
    2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 189 - 196
  • [35] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [36] Machine learning transition temperatures from 2D structure
    Sifain, Andrew E.
    Rice, Betsy M.
    Yalkowsky, Samuel H.
    Barnes, Brian C.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 105
  • [37] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [38] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    Kirsanova, D. Yu.
    Soldatov, M. A.
    Gadzhimagomedova, Z. M.
    Pashkov, D. M.
    Chernov, A. V.
    Butakova, M. A.
    Soldatov, A. V.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03): : 485 - 494
  • [39] Scientific Machine Learning of 2D Perovskite Nanosheet Formation
    Dahl, Jakob C.
    Niblett, Samuel
    Cho, Yeongsu
    Wang, Xingzhi
    Zhang, Ye
    Chan, Emory M.
    Alivisatos, A. Paul
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (42) : 23076 - 23087
  • [40] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432