Integrated Energy System Dispatch Considering Carbon Trading Mechanisms and Refined Demand Response for Electricity, Heat, and Gas

被引:2
|
作者
Gao, Lihui [1 ]
Yang, Shuanghao [1 ]
Chen, Nan [1 ]
Gao, Junheng [1 ]
机构
[1] Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130012, Jilin, Peoples R China
关键词
integrated energy system; demand response; tiered carbon trading mechanism; OPTIMAL OPERATION;
D O I
10.3390/en17184705
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To realize a carbon-efficient and economically optimized dispatch of the integrated energy system (IES), this paper introduces a highly efficient dispatch strategy that integrates demand response within a tiered carbon trading mechanism. Firstly, an efficient dispatch model making use of CHP and P2G technologies is developed to strengthen the flexibility of the IES. Secondly, an improved demand response model based on the price elasticity matrix and the capacity for the substitution of energy supply modes is constructed, taking into account three different kinds of loads: heat, gas, and electricity. Subsequently, the implementation of a reward and penalty-based tiered carbon trading mechanism regulates the system's carbon trading costs and emissions. Ultimately, the goal of the objective function is to minimize the overall costs, encompassing energy purchase, operation and maintenance, carbon trading, and compensation. The original problem is reformulated into a mixed-integer linear programming problem, which is solved using CPLEX. The simulation results from four example scenarios demonstrate that, compared with the conventional carbon trading approach, the aggregate system costs are reduced by 2.44% and carbon emissions are reduced by 3.93% when incorporating the tiered carbon trading mechanism. Subsequent to the adoption of demand response, there is a 2.47% decrease in the total system cost. The proposed scheduling strategy is validated as valuable to ensure the low-carbon and economically efficient functioning of the integrated energy system.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Environmental economic dispatch of integrated regional energy system considering integrated demand response
    He, Liangce
    Lu, Zhigang
    Geng, Lijun
    Zhang, Jiangfeng
    Li, Xueping
    Guo, Xiaoqiang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 116
  • [22] Day-Ahead Economic Dispatch for Electricity-Heating Integrated Energy System Considering Incentive Integrated Demand Response
    Wang Y.
    Xie H.
    Sun X.
    Bie Z.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (09): : 1926 - 1934
  • [23] Low-Carbon Optimal Scheduling of Integrated Energy System Considering Multiple Uncertainties and Electricity-Heat Integrated Demand Response
    Li, Hongwei
    Li, Xingmin
    Chen, Siyu
    Li, Shuaibing
    Kang, Yongqiang
    Ma, Xiping
    ENERGIES, 2024, 17 (01)
  • [24] Low-carbon economic dispatch of integrated electricity and natural gas energy system considering carbon capture device
    Liu, Xinghua
    Li, Xiang
    Tian, Jiaqiang
    Cao, Hui
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021,
  • [25] Low carbon economic dispatch of integrated energy system considering extended electric heating demand response
    Wu, Min
    Xu, Jiazhu
    Shi, Zhenglu
    ENERGY, 2023, 278
  • [26] A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response
    Tan, Hong
    Yan, Wei
    Ren, Zhouyang
    Wang, Qiujie
    Mohamed, Mohamed A.
    ENERGY, 2022, 239
  • [27] Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response
    Yang H.
    Li M.
    Jiang Z.
    Liu X.
    Guo Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2020, 48 (10): : 30 - 37
  • [28] An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination
    Bu, Feifei
    Wang, Shiqian
    Bai, Hongkun
    Wang, Yuanyuan
    Yu, Lifang
    Liu, Haoming
    ENERGY REPORTS, 2023, 9 : 1092 - 1101
  • [29] An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination
    Bu, Feifei
    Wang, Shiqian
    Bai, Hongkun
    Wang, Yuanyuan
    Yu, Lifang
    Liu, Haoming
    ENERGY REPORTS, 2023, 9 : 1092 - 1101
  • [30] Energy Circuit Theory of Integrated Energy System Analysis (Ⅴ): Integrated Electricity-Heat-Gas Dispatch
    CHEN Yuwei
    SUN Hongbin
    GUO Qinglai
    中国电机工程学报, 2020, (24) : 8230 - 8230