An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination

被引:8
|
作者
Bu, Feifei [1 ]
Wang, Shiqian [1 ]
Bai, Hongkun [1 ]
Wang, Yuanyuan [1 ]
Yu, Lifang [2 ]
Liu, Haoming [2 ]
机构
[1] State Grid Henan Econ Res Inst, Zhengzhou 450052, Peoples R China
[2] Hohai Univ, Coll Energy & Elect Engn, Nanjing 211100, Jiangsu, Peoples R China
关键词
Integrated energy system; Integrated electricity-hydrogen-carbon system; Hydrogen utilization; Integrated demand response; P2G; POWER; SYSTEM; UNCERTAINTY; WIND; HEAT; GAS;
D O I
10.1016/j.egyr.2023.04.120
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Driven by the goal of 'carbon peak, carbon neutrality', an integrated demand response strategy for integrated electricity-hydrogen energy systems is proposed for low-carbon energy supply parks considering the multi-level and multi-energy characteristics of campus-based microgrids. Firstly, considering the spatial and temporal complementary nature of wind and photovoltaic generation and energy utilization, the energy flow framework of the park is built based on the electricity and hydrogen energy carriers. Clean energy is employed as the main energy supply, and power, heat, cooling, and gas loads are considered energy consumption. Secondly, the operation mechanism of coupled hydrogen storage, hydrogen fuel cell, and carbon capture equipment is analyzed in the two-stage power-to-gas conversion process. Thirdly, considering the operating costs and environmental costs of the park, an integrated demand response dispatch model is constructed for the coupled electricity-hydrogen-carbon system while satisfying the system equipment constraints, network constraints and energy balance constraints of the park system. Finally, Case study in an energy supply park system is implemented. The dispatch results of the integrated demand response with customer participation in the conventional, electricity-hydrogen and electricity-hydrogen-carbon modes are compared to verify the effectiveness of the proposed strategy in renewable accommodation, environmental protection, and economic benefits. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1092 / 1101
页数:10
相关论文
共 50 条
  • [1] An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination
    Bu, Feifei
    Wang, Shiqian
    Bai, Hongkun
    Wang, Yuanyuan
    Yu, Lifang
    Liu, Haoming
    ENERGY REPORTS, 2023, 9 : 1092 - 1101
  • [2] Low-carbon Economic Dispatch of Integrated Electricity-Heat-Hydrogen Systems Considering Integrated Demand Response
    Liu, Zesan
    Yang, Miao
    Jia, Wenhao
    Ding, Tao
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1173 - 1177
  • [3] Low-carbon economic dispatch of hydrogen-containing integrated energy system considering stepped demand response
    Li, Weiguo
    He, Mingyang
    Cai, Tingting
    ENERGY REPORTS, 2024, 11 : 4222 - 4232
  • [4] Low-Carbon Economic Dispatch of Integrated Energy Systems in Industrial Parks Considering Comprehensive Demand Response and Multi-Hydrogen Supply
    Su, Bohua
    Wang, Ruiqi
    Wang, Ming
    Wang, Mingyuan
    Zhao, Qianchuan
    Lv, Yisheng
    Gao, He
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [5] Low-carbon Economic Dispatch of Park-level Integrated Energy System Considering Carbon Trading and Flexible Response of Supply Side
    Zhou, Wei
    Yin, Chenxu
    Zhang, Zhaoqing
    Meng, Yunfan
    Chen, Li
    Sun, Yonghui
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 712 - 717
  • [6] Low-carbon economic dispatch of park-level integrated energy system considering exergy efficiency and flexible double response of supply and demand
    Zhou, Wei
    Sun, Yong-Hui
    Xie, Dong-Liang
    Wang, Jian-Xi
    Cui, Gui-Yang
    He, Yi
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (09): : 1653 - 1663
  • [7] A Low-Carbon Dispatch Strategy for Power Systems Considering Flexible Demand Response and Energy Storage
    Han, Haiteng
    Wei, Tiantian
    Wu, Chen
    Xu, Xiuyan
    Zang, Haixiang
    Sun, Guoqiang
    Wei, Zhinong
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [8] A bi-level optimization strategy of electricity-hydrogen-carbon integrated energy system considering photovoltaic and wind power uncertainty and demand response
    Lu, Mingxuan
    Teng, Yun
    Chen, Zhe
    Song, Yu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Low-carbon dispatch of multi-regional integrated energy systems considering integrated demand side response
    Ji, Xiu
    Li, Meiyue
    Li, Meng
    Han, Huanhuan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [10] Low-carbon economic dispatch considering integrated demand response and multistep carbon trading for multi-energy microgrid
    Yilin Long
    Yong Li
    Yahui Wang
    Yijia Cao
    Lin Jiang
    Yicheng Zhou
    Youyue Deng
    Yosuke Nakanishi
    Scientific Reports, 12