Limiting bias in AI models for improved and equitable cancer care

被引:1
|
作者
Ghassemi, Marzyeh [1 ,2 ]
Gusev, Alexander [3 ,4 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
关键词
D O I
10.1038/s41568-024-00739-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cancer screening, diagnosis and care stand to benefit greatly from advances in artificial intelligence (AI). Researchers, developers and deployers must ensure that applications of AI avoid known racial and gender biases to advance health care for all. Cancer screening, diagnosis and care can benefit greatly from advances in artificial intelligence (AI). In this Comment, Ghassemi and Gusev discuss how AI applications must address and avoid known racial and gender biases to improve health care for all.
引用
收藏
页码:823 / 824
页数:2
相关论文
共 50 条
  • [41] Cancer - Improved mouse models
    Berns, A
    NATURE, 2001, 410 (6832) : 1043 - 1044
  • [42] Racial Bias Exacerbated through AI: An Example Using Chest Radiograph Models
    Nikolic, Boris
    RADIOLOGY, 2023, 309 (02)
  • [43] Bias in AI-based models for medical applications: challenges and mitigation strategies
    Mittermaier, Mirja
    Raza, Marium M.
    Kvedar, Joseph C.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [44] Communicating the cultural other: trust and bias in generative AI and large language models
    Jenks, Christopher J.
    APPLIED LINGUISTICS REVIEW, 2025, 16 (02) : 787 - 795
  • [45] Measuring Bias in AI Models: An Statistical Approach Introducing N-Sigma
    DeAlcala, Daniel
    Serna, Ignacio
    Morales, Aythami
    Fierrez, Julian
    Ortega-Garcia, Javier
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1167 - 1172
  • [46] Bias in AI-based models for medical applications: challenges and mitigation strategies
    Mirja Mittermaier
    Marium M. Raza
    Joseph C. Kvedar
    npj Digital Medicine, 6
  • [47] Widespread adoption of AI risk models for maternal hemorrhage requires mitigation of bias
    Malakouti, Salim
    Clermont, Gilles
    Hauskrecht, Milos
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 228 (01) : S388 - S389
  • [48] BIAS CORRECTION AND IMPROVED RESIDUALS FOR NONEXPONENTIAL FAMILY NONLINEAR MODELS
    PAULA, GA
    CORDEIRO, GM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (05) : 1193 - 1210
  • [49] Guardrails for the use of generalist AI in cancer care
    Gilbert, Stephen
    Kather, Jakob Nikolas
    NATURE REVIEWS CANCER, 2024, 24 (06) : 357 - 358
  • [50] Collaboration for improved cancer care
    Vinidh Paleri
    Lorna K. McCaul
    British Dental Journal, 2022, 233 : 697 - 697