Limiting bias in AI models for improved and equitable cancer care

被引:1
|
作者
Ghassemi, Marzyeh [1 ,2 ]
Gusev, Alexander [3 ,4 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
关键词
D O I
10.1038/s41568-024-00739-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cancer screening, diagnosis and care stand to benefit greatly from advances in artificial intelligence (AI). Researchers, developers and deployers must ensure that applications of AI avoid known racial and gender biases to advance health care for all. Cancer screening, diagnosis and care can benefit greatly from advances in artificial intelligence (AI). In this Comment, Ghassemi and Gusev discuss how AI applications must address and avoid known racial and gender biases to improve health care for all.
引用
收藏
页码:823 / 824
页数:2
相关论文
共 50 条
  • [11] Rising to the challenge of bias in health care AI
    Cho, Mildred K.
    NATURE MEDICINE, 2021, 27 (12) : 2079 - 2081
  • [12] AI Based Cancer Detection Models Using Primary Care Datasets
    Ristanoski, Goce
    Emery, Jon
    Martinez Gutierrez, Javiera
    McCarthy, Damien
    Aickelin, Uwe
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (02) : 192 - 197
  • [13] Bias analysis of AI models for undergraduate student admissions
    Kelly Van Busum
    Shiaofen Fang
    Neural Computing and Applications, 2025, 37 (12) : 7785 - 7795
  • [14] Value and Cancer Care: Toward an Equitable Future
    Schnipper, Lowell E.
    Meropol, Neal J.
    Brock, Dan W.
    CLINICAL CANCER RESEARCH, 2010, 16 (24) : 6004 - 6008
  • [15] Fair AI-powered orthopedic image segmentation: addressing bias and promoting equitable healthcare
    Siddiqui, Ismaeel A.
    Littlefield, Nickolas
    Carlson, Luke A.
    Gong, Matthew
    Chhabra, Avani
    Menezes, Zoe
    Mastorakos, George M.
    Thakar, Sakshi Mehul
    Abedian, Mehrnaz
    Lohse, Ines
    Weiss, Kurt R.
    Plate, Johannes F.
    Moradi, Hamidreza
    Amirian, Soheyla
    Tafti, Ahmad P.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [16] Underpinning Improved Outcomes through Preventative Patient Care Models Based on Remote Monitoring and AI
    Paraschiv, Elena-Anca
    Ianculescu, Marilena
    Bica, Ovidiu
    Sipica, Alexandru
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [17] Improved Models for Media Bias Detection and Subcategorization
    Menzner, Tim
    Leidner, Jochen L.
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, PT I, NLDB 2024, 2024, 14762 : 181 - 196
  • [18] Mitigation of AI adoption bias through an improved autonomous AI system for diabetic retinal disease
    Abramoff, Michael D.
    Lavin, Philip T.
    Jakubowski, Julie R.
    Blodi, Barbara A.
    Keeys, Mia
    Joyce, Cara
    Folk, James C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [19] Can equitable care eliminate colon cancer disparities?
    Patel, Manali I.
    Ma, Yifei
    Rhoads, Kim Felder
    JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (34)
  • [20] Equitable Access to Cancer Care for Black People in Canada
    Ezeife, Doreen A.
    Padmore, Greg
    Vaska, Marcus
    Truong, Tony H.
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2023, 195 (01) : E51 - E55