Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules

被引:1
|
作者
Cui, Yuqi [1 ,3 ]
Tan, Chengyu [1 ,3 ]
Zhang, Rui [1 ]
Tan, Shan [1 ]
Li, Yiming [1 ]
Wu, Huijue [1 ]
Shi, Jiangjian [1 ]
Luo, Yanhong [1 ,3 ,4 ]
Li, Dongmei [1 ,3 ,4 ]
Meng, Qingbo [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Renewable Energy Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
来源
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
perovskite solar cells; inorganic perovskite modules; intermediate phase regulation; CsPbI3; blade coating; HALIDE PEROVSKITE; SCALABLE FABRICATION; MODULES;
D O I
10.1007/s40843-024-3046-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large pinhole-free, high-crystal-quality perovskite films are the key to realizing efficient, stable CsPbI3 perovskite modules. In this work, we use the crystal growth modulation strategy to prepare high-quality CsPbI3 films from small to large sizes using a new precursor solution with CsI/DMAPbI(3)/PbI2 in a DMAAc/DMF mixed solvent (DMAAc: dimethylamine acetate). The champion small-size CsPbI3 device presents a photoelectric conversion efficiency (PCE) above 21% and a certified PCE of 20.05%, and the best blade-coated CsPbI3 minimodule exhibits a PCE of 18.3% for an aperture area of 12.39 cm(2) and a PCE of 19.9% for an active area of 11.40 cm(2). In addition, the composition engineering of the precursor solution toward CsPbI3 crystallization is explored: the DMAAc/DMF mixed solvent can facilitate phase transformation and reduce the nucleation rate, and the mixture of PbI2 and DMAPbI(3) will further improve the film microstructure and uniformity. Consequently, the anti-humidity stability and phase stability of the CsPbI3 films are greatly improved, and the corresponding devices exhibit good operational stability. CsPbI3 modules with simple encapsulation also present excellent long-term storage stability over 150 days. This crystal growth regulation strategy provides a new method to produce large-scale CsPbI3 and even hybrid perovskite solar cells for future commercialization.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Nano-Space Confinement Crystal Growth Boosted Hole Extraction in Carbon-Based CsPbI3 Perovskite Solar Cells
    Zhang, Qixian
    Wu, Yuhang
    Wei, Xiaozhen
    Li, Gaofeng
    Lv, Chunyu
    Gao, Mangmang
    Li, Weiping
    Zhu, Liqun
    Lan, Yisha
    Wang, Kexiang
    Yin, Penggang
    Bai, Yang
    Zhu, Cheng
    Chen, Qi
    Liu, Huicong
    Chen, Haining
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [42] Imidazole as an Amphoteric Lewis Acid-Base Additive for Efficient CsPbI3 Inorganic Perovskite Solar Cells
    Yuan, Yuqi
    Wang, Haijun
    Xu, Lingbo
    Zhang, Haofeng
    Liu, Yu
    Lin, Ping
    Wang, Peng
    Wu, Xiaoping
    Yu, Xuegong
    Cui, Can
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 10996 - 11004
  • [43] Efficient Inverted CsPbI3 Solar Cells with Pb―S Contained Organosulfide-Halide Perovskite Heterojunction
    Lu, Chunyan
    Guo, Xuemin
    Zhang, Wenxiao
    Yuan, Haobo
    Liu, Acan
    Yang, Hui
    Li, Wen
    Cui, Zhengbo
    Hu, Yuyang
    Li, Xiaodong
    Fang, Junfeng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (39)
  • [44] Strain-Stabilized CsPbI3 Perovskite via Organopolysilazane for Efficient Solar Cells with Efficiency over 19%
    Yu, Haixuan
    Li, Xiongjie
    Zhang, Zhiguo
    Ban, Huaxia
    Gong, Xiu
    Liu, Zhirong
    Zhang, Miaomiao
    Sun, Qiang
    Zhang, Tao
    Shen, Yan
    Zhang, Xiao-Li
    Zhu, Jun
    Wang, Mingkui
    ADVANCED OPTICAL MATERIALS, 2022, 10 (24)
  • [45] Efficient and Stable CsPbI3 Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups
    Wu, Tianhao
    Wang, Yanbo
    Dai, Zhensheng
    Cui, Danyu
    Wang, Tao
    Meng, Xiangyue
    Bi, Enbing
    Yang, Xudong
    Han, Liyuan
    ADVANCED MATERIALS, 2019, 31 (24)
  • [46] Strontium-Doped CsPbI3 Quantum Dots as an Interfacial Layer for Efficient Inorganic Perovskite Solar Cells
    Xu, Yinyan
    Wang, Qian
    Zhang, Lun
    Lyu, Mei
    Lu, Hongbo
    Bai, Tianxin
    Liu, Feng
    Wang, Mingkui
    Zhu, Jun
    SOLAR RRL, 2021, 5 (12)
  • [47] Tailoring the molecular size of alkylamine modifiers for fabricating efficient and stable inverted CsPbI3 perovskite solar cells
    Liu, Zhongyu
    Wang, Hongwei
    Han, Haijun
    Jiang, Hong
    Liu, Ning
    Wang, Jianwei
    Zhang, Jing
    Cui, Tian
    Liu, Xiaohui
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (28) : 10604 - 10612
  • [48] Dual Passivation of CsPbI3 Perovskite Nanocrystals with Amino Acid Ligands for Efficient Quantum Dot Solar Cells
    Jia, Donglin
    Chen, Jingxuan
    Yu, Mei
    Liu, Jianhua
    Johansson, Erik M. J.
    Hagfeldt, Anders
    Zhang, Xiaoliang
    SMALL, 2020, 16 (24)
  • [49] Vacuum-Assisted Thermal Annealing of CsPbI3 for Highly Stable and Efficient Inorganic Perovskite Solar Cells
    Yu, Guanghui
    Jiang, Ke-Jian
    Gu, Wei-Min
    Li, Yawen
    Lin, Yuze
    Xu, Yanting
    Jiao, Xinning
    Xue, Tangyue
    Zhang, Yiqiang
    Song, Yanlin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (27)
  • [50] A favored crystal orientation for efficient printable mesoscopic perovskite solar cells
    Wu, Jiawen
    Zhang, Weihua
    Wang, Qifei
    Liu, Shuang
    Du, Jiankang
    Mei, Anyi
    Rong, Yaoguang
    Hu, Yue
    Han, Hongwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (22) : 11148 - 11154