Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules

被引:1
|
作者
Cui, Yuqi [1 ,3 ]
Tan, Chengyu [1 ,3 ]
Zhang, Rui [1 ]
Tan, Shan [1 ]
Li, Yiming [1 ]
Wu, Huijue [1 ]
Shi, Jiangjian [1 ]
Luo, Yanhong [1 ,3 ,4 ]
Li, Dongmei [1 ,3 ,4 ]
Meng, Qingbo [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Renewable Energy Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
来源
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
perovskite solar cells; inorganic perovskite modules; intermediate phase regulation; CsPbI3; blade coating; HALIDE PEROVSKITE; SCALABLE FABRICATION; MODULES;
D O I
10.1007/s40843-024-3046-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large pinhole-free, high-crystal-quality perovskite films are the key to realizing efficient, stable CsPbI3 perovskite modules. In this work, we use the crystal growth modulation strategy to prepare high-quality CsPbI3 films from small to large sizes using a new precursor solution with CsI/DMAPbI(3)/PbI2 in a DMAAc/DMF mixed solvent (DMAAc: dimethylamine acetate). The champion small-size CsPbI3 device presents a photoelectric conversion efficiency (PCE) above 21% and a certified PCE of 20.05%, and the best blade-coated CsPbI3 minimodule exhibits a PCE of 18.3% for an aperture area of 12.39 cm(2) and a PCE of 19.9% for an active area of 11.40 cm(2). In addition, the composition engineering of the precursor solution toward CsPbI3 crystallization is explored: the DMAAc/DMF mixed solvent can facilitate phase transformation and reduce the nucleation rate, and the mixture of PbI2 and DMAPbI(3) will further improve the film microstructure and uniformity. Consequently, the anti-humidity stability and phase stability of the CsPbI3 films are greatly improved, and the corresponding devices exhibit good operational stability. CsPbI3 modules with simple encapsulation also present excellent long-term storage stability over 150 days. This crystal growth regulation strategy provides a new method to produce large-scale CsPbI3 and even hybrid perovskite solar cells for future commercialization.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Efficient carrier multiplication in CsPbI3 perovskite nanocrystals
    de Weerd, Chris
    Gomez, Leyre
    Capretti, Antonio
    Lebrun, Delphine M.
    Matsubara, Eiichi
    Lin, Junhao
    Ashida, Masaaki
    Spoor, Frank C. M.
    Siebbeles, Laurens D. A.
    Houtepen, Arjan J.
    Suenaga, Kazutomo
    Fujiwara, Yasufumi
    Gregorkiewicz, Tom
    NATURE COMMUNICATIONS, 2018, 9
  • [32] Role of Methyl Acetate in Highly Reproducible Efficient CsPbI3 Perovskite Quantum Dot Solar Cells
    Han, Rui
    Zhao, Qian
    Su, Jian
    Zhou, Xiaojun
    Ye, Xiaofang
    Liang, Xiaojuan
    Li, Juan
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (16): : 8469 - 8478
  • [33] Anchoring CsPbI3 crystalline for stable and efficient perovskite solar cells with perfluorocarbon-assisted shield
    Zhang, Liying
    Liu, Boyuan
    Xu, Xiaoxiao
    Xu, Shendong
    Du, Du
    Zhang, Hui
    Guo, Tianle
    Zheng, Haiying
    Liu, Guozhen
    Pan, Xu
    SOLAR ENERGY, 2021, 228 : 636 - 642
  • [34] Efficient carrier multiplication in CsPbI3 perovskite nanocrystals
    Chris de Weerd
    Leyre Gomez
    Antonio Capretti
    Delphine M. Lebrun
    Eiichi Matsubara
    Junhao Lin
    Masaaki Ashida
    Frank C. M. Spoor
    Laurens D. A. Siebbeles
    Arjan J. Houtepen
    Kazutomo Suenaga
    Yasufumi Fujiwara
    Tom Gregorkiewicz
    Nature Communications, 9
  • [35] Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells
    Jayan, Deepthi K.
    Sebastian, Varkey
    Kurian, Joji
    SOLAR ENERGY, 2021, 221 : 99 - 108
  • [36] Cs1-xDMAxPbI3 versus CsPbI3 for Perovskite Solar Cells
    Liu, Mengqi
    Duan, Linrui
    Jacobsson, T. Jesper
    Luo, Jingshan
    SOLAR RRL, 2023, 7 (07)
  • [37] Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells
    Hu, Yanqiang
    Bai, Fan
    Liu, Xinbang
    Ji, Qingmin
    Miao, Xiaoliang
    Qiu, Ting
    Zhang, Shufang
    ACS ENERGY LETTERS, 2017, 2 (10): : 2219 - 2227
  • [38] Ligand Engineering of CsPbI3 Quantum Dots for Efficient Solar Cells
    Yuan, Jifeng
    Tian, Jianjun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (26): : 12520 - 12527
  • [39] CsPbI3 perovskite quantum dot solar cells: opportunities, progress and challenges
    Khan, Jahangeer
    Ullah, Ihsan
    Yuan, Jianyu
    MATERIALS ADVANCES, 2022, 3 (04): : 1931 - 1952
  • [40] Hydrazide Derivatives for Defect Passivation in Pure CsPbI3 Perovskite Solar Cells
    Che, Yuhang
    Liu, Zhike
    Duan, Yuwei
    Wang, Jungang
    Yang, Shaomin
    Xu, Dongfang
    Xiang, Wanchun
    Wang, Tao
    Yuan, Ningyi
    Ding, Jianning
    Liu, Shengzhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (33)