Exploration of the pneumocandin biosynthetic gene cluster based on efficient CRISPR/Cas9 gene editing strategy in Glarea lozoyensis

被引:2
|
作者
Jiang, Kaili [1 ]
Jin, Yating [1 ]
Luo, Pan [1 ]
Wang, Xinxin [1 ]
Zhang, Yuanwei [1 ]
Shi, Tianqiong [2 ]
Chen, Jingjing [3 ]
Song, Ping [2 ]
Lu, Ling [1 ]
机构
[1] Nanjing Normal Univ, Coll Life Sci, Jiangsu Engn & Technol Res Ctr Microbiol, Jiangsu Key Lab Pathogens & Ecosyst, Nanjing, Peoples R China
[2] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, State Key Lab Bioact Subst & Funct Nat Med, NHC Key Lab Biosynthesis Nat Prod,CAMS Key Lab Enz, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
Glarea lozoyensis; Pneumocandin B 0; CRISPR/Cas9; Dual sgRNAs; SULFUR PROTEIN SUBUNIT; ZALERION-ARBORICOLA; RESISTANCE; CARBOXIN; TRANSFORMATION; DISCOVERY; PRECURSOR;
D O I
10.1016/j.ijbiomac.2024.135220
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pneumocandin B0 (PB0) is a lipopeptide produced by the fungus Glarea lozoyensis. The existing challenges with the low-yield and the extended-fermentation cycle emphasize necessity for strain improvement. In this study, we optimized conditions to obtain high-quality protoplasts and screened effective selection markers, leading to the construction of three CRISPR/Cas9 gene editing systems. Utilizing a constitutive Cas9 expression recipient strain, combined with dual sgRNAs targeting, we achieved highly efficient editing of target genes. We successfully knocked out 10 genes within the pneumocandin putative biosynthetic gene cluster and analyzed their roles in PB0 production. Our findings reveal that 4 of 10 genes are directly involved in PB0 production. Specially, the deletion of gltrt or gl10050 resulted in reduced PB0 production, while the absence of glhyp or glhtyC led to the complete loss of PB0 biosynthesis. Notably, the deletion of glhyp caused the silencing of nearly all cluster genes, whereas overexpression of glhyp led to a 2.38-fold increase in PB0 production. Therefore, this study provides the first comprehensive exploration of the functions of 10 genes within the pneumocandin putative biosynthetic gene cluster. Our findings provide valuable technical strategies for constructing bioengineering strains with purposefully enhanced PB0 production.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Gene editing using CRISPR/Cas9 in neuromuscular disorders
    Gonorazky, H.
    Maani, N.
    Khattak, S.
    Ivakine, Z.
    Cohn, R.
    Dowling, J.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S127 - S127
  • [32] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Sen Xu
    Thinh Phu Pham
    Swatantra Neupane
    Marine Life Science & Technology, 2020, 2 : 1 - 5
  • [33] Fanconi Anemia Gene Editing by the CRISPR/Cas9 System
    Osborn, Mark J.
    Gabriel, Richard
    Webber, Beau R.
    DeFeo, Anthony P.
    McElroy, Amber N.
    Jarjour, Jordan
    Starker, Colby G.
    Wagner, John E.
    Joung, J. Keith
    Voytas, Daniel F.
    von Kalle, Christof
    Schmidt, Manfred
    Blazar, Bruce R.
    Tolar, Jakub
    HUMAN GENE THERAPY, 2015, 26 (02) : 114 - 126
  • [34] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Zoe A. Stewart
    Current Transplantation Reports, 2022, 9 : 268 - 275
  • [35] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Stewart, Zoe A.
    CURRENT TRANSPLANTATION REPORTS, 2022, 9 (04) : 268 - 275
  • [36] CRISPR/Cas9 gene editing special issue INTRODUCTION
    Doench, John G.
    FEBS JOURNAL, 2016, 283 (17) : 3160 - 3161
  • [37] SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods
    De Rouck, Sander
    Mocchetti, Antonio
    Dermauw, Wannes
    Van Leeuwen, Thomas
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2024, 165
  • [38] Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9
    Singh, Kshitiz
    Evens, Hanneke
    Nair, Nisha
    Rincon, Melvin Y.
    Sarcar, Shilpita
    Samara-Kuko, Ermira
    Chuah, Marinee K.
    VandenDriessche, Thierry
    MOLECULAR THERAPY, 2018, 26 (05) : 1241 - 1254
  • [39] Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9
    Singh, Kshitiz
    Evens, Hanneke
    Rincon, Melvin
    Nair, Nisha
    Sarcar, Shilpita
    Samara-Kuko, Ermira
    Chuah, Marinee K.
    VandenDriessche, Thierry
    MOLECULAR THERAPY, 2016, 24 : S50 - S50
  • [40] Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter
    Fei Zhang
    Chantal LeBlanc
    Vivian F. Irish
    Yannick Jacob
    Plant Cell Reports, 2017, 36 : 1883 - 1887