Exploration of the pneumocandin biosynthetic gene cluster based on efficient CRISPR/Cas9 gene editing strategy in Glarea lozoyensis

被引:2
|
作者
Jiang, Kaili [1 ]
Jin, Yating [1 ]
Luo, Pan [1 ]
Wang, Xinxin [1 ]
Zhang, Yuanwei [1 ]
Shi, Tianqiong [2 ]
Chen, Jingjing [3 ]
Song, Ping [2 ]
Lu, Ling [1 ]
机构
[1] Nanjing Normal Univ, Coll Life Sci, Jiangsu Engn & Technol Res Ctr Microbiol, Jiangsu Key Lab Pathogens & Ecosyst, Nanjing, Peoples R China
[2] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, State Key Lab Bioact Subst & Funct Nat Med, NHC Key Lab Biosynthesis Nat Prod,CAMS Key Lab Enz, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
Glarea lozoyensis; Pneumocandin B 0; CRISPR/Cas9; Dual sgRNAs; SULFUR PROTEIN SUBUNIT; ZALERION-ARBORICOLA; RESISTANCE; CARBOXIN; TRANSFORMATION; DISCOVERY; PRECURSOR;
D O I
10.1016/j.ijbiomac.2024.135220
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pneumocandin B0 (PB0) is a lipopeptide produced by the fungus Glarea lozoyensis. The existing challenges with the low-yield and the extended-fermentation cycle emphasize necessity for strain improvement. In this study, we optimized conditions to obtain high-quality protoplasts and screened effective selection markers, leading to the construction of three CRISPR/Cas9 gene editing systems. Utilizing a constitutive Cas9 expression recipient strain, combined with dual sgRNAs targeting, we achieved highly efficient editing of target genes. We successfully knocked out 10 genes within the pneumocandin putative biosynthetic gene cluster and analyzed their roles in PB0 production. Our findings reveal that 4 of 10 genes are directly involved in PB0 production. Specially, the deletion of gltrt or gl10050 resulted in reduced PB0 production, while the absence of glhyp or glhtyC led to the complete loss of PB0 biosynthesis. Notably, the deletion of glhyp caused the silencing of nearly all cluster genes, whereas overexpression of glhyp led to a 2.38-fold increase in PB0 production. Therefore, this study provides the first comprehensive exploration of the functions of 10 genes within the pneumocandin putative biosynthetic gene cluster. Our findings provide valuable technical strategies for constructing bioengineering strains with purposefully enhanced PB0 production.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Building a Suite of CRISPR/Cas9 Tools for Efficient Switchgrass Gene Editing
    Illa-Berenguer, Eudald
    LaFayette, Peter R.
    Orr, Gary A.
    Parrott, Wayne
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2019, 55 : S58 - S59
  • [22] CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Glarea lozoyensis and Its Application in Manipulating gloF
    Wei, Teng-Yun
    Wu, Yuan-Jie
    Xie, Qiu-Ping
    Tang, Jia-Wei
    Yu, Zhi-Tuo
    Yang, Song-Bai
    Chen, Shao-Xin
    ACS SYNTHETIC BIOLOGY, 2020, 9 (08): : 1968 - 1977
  • [23] CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives
    Naso, Gaetano
    Petrova, Anastasia
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (03) : 313 - 326
  • [24] CRISPR/CAS9 GENE EDITING TO BLOCK MALARIA TRANSMISSION
    Simoes, Maria
    Dong, Yuemei
    Dimopoulos, George
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2018, 99 (04): : 262 - 262
  • [25] CRISPR/Cas9 gene editing therapies for cystic fibrosis
    Graham, Carina
    Hart, Stephen
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2021, 21 (06) : 767 - 780
  • [26] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Xu, Sen
    Pham, Thinh
    Neupane, Swatantra
    MARINE LIFE SCIENCE & TECHNOLOGY, 2020, 2 (01) : 1 - 5
  • [27] Therapeutic gene editing in haematological disorders with CRISPR/Cas9
    Jensen, Trine I.
    Axelgaard, Esben
    Bak, Rasmus O.
    BRITISH JOURNAL OF HAEMATOLOGY, 2019, 185 (05) : 821 - 835
  • [28] The enhancement of CRISPR/Cas9 gene editing using metformin
    Rollins, Jaedyn L.
    Hall, Raquel M.
    Lemus, Clara J.
    Leisten, Lauren A.
    Johnston, Jennifer M.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 35
  • [29] CRISPR/CAS9 GENE EDITING APPLICATIONS IN CARDIOVASCULAR DISEASE
    Khouzam, J.
    Khouzam, R.
    Tivakaran, V.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2021, 69 (02) : 423 - 424
  • [30] Lipid and polymer mediated CRISPR/Cas9 gene editing
    Gong, Yan
    Tian, Siyu
    Xuan, Yang
    Zhang, Shubiao
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (20) : 4369 - 4386