Evaluating the Ability of External Electric Fields to Accelerate Reactions in Solution

被引:2
|
作者
Aziz, Miriam [1 ]
Prindle, Claudia R. [1 ]
Lee, Woojung [1 ]
Zhang, Boyuan [2 ]
Schaack, Cedric [3 ]
Steigerwald, Michael L. [1 ]
Zandkarimi, Fereshteh [1 ,4 ,5 ]
Nuckolls, Colin [1 ]
Venkataraman, Latha [1 ,4 ,6 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Fairfield Univ, Dept Chem, Fairfield, CT 06824 USA
[3] Wake Forest Univ, Dept Chem, Winston Salem, NC 27109 USA
[4] Columbia Univ, Dept Chem, New York, NY 10027 USA
[5] Columbia Univ, Mass Spectrometry Core Facil, Dept Chem, New York, NY 10027 USA
[6] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 39期
关键词
CATALYSIS; SELECTIVITY; CHEMISTRY; GLYCEROL;
D O I
10.1021/acs.jpcb.4c04864
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the catalytic effects of external electric fields (EEFs) on two reactions in solution: the Menshutkin reaction and the Chapman rearrangement. Utilizing a scanning tunneling microscope-based break-junction (STM-BJ) setup and monitoring reaction rates through high-performance liquid chromatography connected to a UV detector (HPLC-UV) and ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-q-ToF-MS), we observed no rate enhancement for either reaction under ambient conditions. Density functional theory (DFT) calculations indicate that electric field-induced changes in reactant orientation and the minimization of activation energy are crucial factors in determining the efficacy of EEF-driven catalysis. Our findings suggest that the current experimental setups and field strengths are insufficient to catalyze these reactions, underscoring the importance of these criteria in assessing the reaction candidates.
引用
收藏
页码:9553 / 9560
页数:8
相关论文
共 50 条
  • [41] Features of Luminescence in Nanotube in External Electric and Magnetic Fields
    Kostyukevich, N. S.
    Karapetyan, S. A.
    Sinyayskii, E. P.
    PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP-2018), 2018,
  • [42] External magnetic fields of ship's electric machines
    Dobkowski, JT
    ELECTROMAGNETIC COMPATIBILITY 1996 - THIRTEENTH INTERNATIONAL WROCLAW SYMPOSIUM, 1996, : 268 - 271
  • [43] Polaron tunneling in copolymers under external electric fields
    Liu, DS
    Wang, LX
    Xie, SJ
    Han, SH
    Mei, LM
    OPTICAL MATERIALS, 2003, 23 (1-2) : 479 - 483
  • [44] Effects of high external electric fields on protein conformation
    Pompa, PP
    Brarnanti, A
    Maruccio, G
    del Mercato, LL
    Chiuri, R
    Cingolani, R
    Rinaldi, R
    NANOTECHNOLOGY II, 2005, 5838 : 171 - 181
  • [45] Molecular Simulation of Crystallisation in External Electric Fields: A Review
    English, Niall J.
    CRYSTALS, 2021, 11 (03)
  • [46] ON THE OSCILLATIONS OF AN ELECTRON PLASMA IN EXTERNAL ELECTRIC AND MAGNETIC FIELDS
    STEPANOV, KN
    TKALICH, VS
    SOVIET PHYSICS-TECHNICAL PHYSICS, 1958, 3 (08): : 1649 - 1659
  • [47] THE SHIELDING OF EXTERNAL ELECTRIC-FIELDS IN ATOMS REVISITED
    FEIL, D
    PHYSICS LETTERS A, 1988, 131 (02) : 101 - 102
  • [48] Electroconvective rotation of a dielectric liquid in external electric fields
    F. P. Grosu
    M. K. Bologa
    Surface Engineering and Applied Electrochemistry, 2010, 46 : 43 - 47
  • [49] How Oriented External Electric Fields Modulate Reactivity
    Yu, Song
    Vermeeren, Pascal
    Hamlin, Trevor A.
    Bickelhaupt, F. Matthias
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (18) : 5683 - 5693
  • [50] Erosive laser torches in external electric and electromagnetic fields
    Goncharov, VK
    Puzyrev, MV
    Chernyavskii, AF
    PUBLICATIONS OF THE ASTRONOMICAL OBSERVATORY OF BELGRADE, NO 66: INVITED LECTURES OF THE 2ND YUGOSLAV-BELARUSSIAN SYMPOSIUM ON PHYSICS & DIAGNOSTICS OF LABORATORY & ASTROPHYSICAL PLASMAS, 1999, : 35 - 46