Evaluating the Ability of External Electric Fields to Accelerate Reactions in Solution

被引:2
|
作者
Aziz, Miriam [1 ]
Prindle, Claudia R. [1 ]
Lee, Woojung [1 ]
Zhang, Boyuan [2 ]
Schaack, Cedric [3 ]
Steigerwald, Michael L. [1 ]
Zandkarimi, Fereshteh [1 ,4 ,5 ]
Nuckolls, Colin [1 ]
Venkataraman, Latha [1 ,4 ,6 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Fairfield Univ, Dept Chem, Fairfield, CT 06824 USA
[3] Wake Forest Univ, Dept Chem, Winston Salem, NC 27109 USA
[4] Columbia Univ, Dept Chem, New York, NY 10027 USA
[5] Columbia Univ, Mass Spectrometry Core Facil, Dept Chem, New York, NY 10027 USA
[6] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 39期
关键词
CATALYSIS; SELECTIVITY; CHEMISTRY; GLYCEROL;
D O I
10.1021/acs.jpcb.4c04864
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigates the catalytic effects of external electric fields (EEFs) on two reactions in solution: the Menshutkin reaction and the Chapman rearrangement. Utilizing a scanning tunneling microscope-based break-junction (STM-BJ) setup and monitoring reaction rates through high-performance liquid chromatography connected to a UV detector (HPLC-UV) and ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-q-ToF-MS), we observed no rate enhancement for either reaction under ambient conditions. Density functional theory (DFT) calculations indicate that electric field-induced changes in reactant orientation and the minimization of activation energy are crucial factors in determining the efficacy of EEF-driven catalysis. Our findings suggest that the current experimental setups and field strengths are insufficient to catalyze these reactions, underscoring the importance of these criteria in assessing the reaction candidates.
引用
收藏
页码:9553 / 9560
页数:8
相关论文
共 50 条
  • [21] Lattice QCD with Strong External Electric Fields
    Yamamoto, Arata
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [22] SHIELDING OF EXTERNAL ELECTRIC-FIELDS IN ATOMS
    ROBINSON, EJ
    PHYSICS LETTERS A, 1987, 121 (06) : 280 - 282
  • [23] BLOCH ELECTRONS IN EXTERNAL ELECTRIC AND MAGNETIC FIELDS
    PRADDAUDE, HC
    PHYSICAL REVIEW, 1965, 140 (4A): : 1292 - +
  • [24] Accelerating Polaritons with External Electric and Magnetic Fields
    Chervy, T.
    Knuppel, P.
    Abbaspour, H.
    Lupatini, M.
    Falt, S.
    Wegscheider, W.
    Kroner, M.
    Imamoglu, A.
    PHYSICAL REVIEW X, 2020, 10 (01)
  • [25] EFFECT OF EXTERNAL ELECTRIC AND MAGNETIC FIELDS ON A PLASMA
    BERTRAND, P
    BRIFFOD, G
    NUCLEAR FUSION, 1962, : 991 - 994
  • [26] Zigzag nanoribbons in external electric and magnetic fields
    Korotyaev, Evgeny L.
    Kutsenko, Anton A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2010, 3 (1-2) : 168 - 191
  • [27] Cholesteric elastomers in external mechanical and electric fields
    Menzel, Andreas M.
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [28] Structured water chains in external electric fields
    Rai, Smita
    Sharma, Nayan
    Rai, Dhurba
    MOLECULAR PHYSICS, 2020, 118 (08)
  • [29] Catalytic Effects of Ammonium and Sulfonium Salts and External Electric Fields on Aza-Diels-Alder Reactions
    He, Cyndi Qixin
    Lam, Ching Ching
    Yu, Peiyuan
    Song, Zhihui
    Chen, Maggie
    Lam, Yu-hong
    Chen, Shuming
    Houk, K. N.
    JOURNAL OF ORGANIC CHEMISTRY, 2020, 85 (04): : 2618 - 2625
  • [30] Catalysis of Methyl Transfer Reactions by Oriented External Electric Fields: Are Gold-Thiolate Linkers Innocent?
    Ramanan, Rajeev
    Danovich, David
    Mandal, Debasish
    Shaik, Sason
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (12) : 4354 - 4362