Generalized maximum entropy methods as limits of the average spectrum method

被引:1
|
作者
Ghanem, Khaldoon [1 ]
Koch, Erik [2 ,3 ]
机构
[1] Quantinuum, Leopoldstr 180, D-80804 Munich, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] JARA High Performance Comp, D-52425 Julich, Germany
关键词
ANALYTIC CONTINUATION; STATISTICAL-MECHANICS; PRINCIPLE;
D O I
10.1103/PhysRevB.108.L201107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that in the continuum limit, the average spectrum method (ASM) is equivalent to maximizing Renyi entropies of order eta, of which Shannon entropy is the special case eta = 1. The order of Renyi entropy is determined by the way the spectra are sampled. Our derivation also suggests a modification of Renyi entropy, giving it a nontrivial eta -> 0 limit. We show that the sharper peaks generally obtained in ASM are associated with entropies of order eta < 1. Our paper provides a generalization of the maximum entropy method that enables extracting more structure than the traditional method.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Bayesian and Maximum Entropy Methods
    Dobrzynski, L.
    PHYSICA SCRIPTA, 2009, 79 (04)
  • [32] Maximum Entropy: Multidimensional Methods
    Hoch, Jeffrey C.
    Mobli, Mehdi
    eMagRes, 2009, 2009
  • [33] A Relationship between the Ordinary Maximum Entropy Method and the Method of Maximum Entropy in the Mean
    Gzyl, Henryk
    ter Horst, Enrique
    ENTROPY, 2014, 16 (02): : 1123 - 1133
  • [34] CONFIDENCE-LIMITS AND MAXIMUM ENTROPY SPECTRA
    REID, JS
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1979, 84 (NA9) : 5289 - 5301
  • [35] A note on maximum entropy spectrum estimation
    Shi, D
    Song, JJ
    Wang, C
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (5-6) : 1311 - 1325
  • [36] MULTIVARIATE MAXIMUM-ENTROPY SPECTRUM
    CHOI, BS
    JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 46 (01) : 56 - 60
  • [37] THE MAXIMUM DETERMINANT METHOD AND THE MAXIMUM-ENTROPY METHOD
    NARAYAN, R
    NITYANANDA, R
    ACTA CRYSTALLOGRAPHICA SECTION A, 1982, 38 (JAN): : 122 - 128
  • [38] The generalized F constraint in the maximum-entropy method -: a study on simulated data
    Palatinus, L
    van Smaalen, S
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : 559 - 567
  • [39] THE MAXIMUM ENTROPY PRINCIPLE: A GENERALIZED CONSTRAINT-BASED ENTROPY
    Chakrabarti, C. G.
    Chakrabarty, I.
    Ghosh, Koyel
    MODERN PHYSICS LETTERS B, 2009, 23 (13): : 1715 - 1721
  • [40] QUADRATIC TSALLIS ENTROPY BIAS AND GENERALIZED MAXIMUM ENTROPY MODELS
    Hou, Yuexian
    Wang, Bo
    Song, Dawei
    Cao, Xiaochun
    Li, Wenjie
    COMPUTATIONAL INTELLIGENCE, 2014, 30 (02) : 233 - 262