Generalized maximum entropy methods as limits of the average spectrum method

被引:1
|
作者
Ghanem, Khaldoon [1 ]
Koch, Erik [2 ,3 ]
机构
[1] Quantinuum, Leopoldstr 180, D-80804 Munich, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] JARA High Performance Comp, D-52425 Julich, Germany
关键词
ANALYTIC CONTINUATION; STATISTICAL-MECHANICS; PRINCIPLE;
D O I
10.1103/PhysRevB.108.L201107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that in the continuum limit, the average spectrum method (ASM) is equivalent to maximizing Renyi entropies of order eta, of which Shannon entropy is the special case eta = 1. The order of Renyi entropy is determined by the way the spectra are sampled. Our derivation also suggests a modification of Renyi entropy, giving it a nontrivial eta -> 0 limit. We show that the sharper peaks generally obtained in ASM are associated with entropies of order eta < 1. Our paper provides a generalization of the maximum entropy method that enables extracting more structure than the traditional method.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] The generalized maximum belief entropy model
    Siran Li
    Rui Cai
    Soft Computing, 2022, 26 : 4187 - 4198
  • [22] GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    THOMAS, MU
    OPERATIONS RESEARCH, 1979, 27 (06) : 1188 - 1196
  • [23] Generalized Maximum Entropy for Supervised Classification
    Mazuelas, Santiago
    Shen, Yuan
    Perez, Aritz
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (04) : 2530 - 2550
  • [24] THE GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    KESAVAN, HK
    KAPUR, JN
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05): : 1042 - 1052
  • [25] Duality in a maximum generalized entropy model
    Eguchi, Shinto
    Komori, Osamu
    Ohara, Atsumi
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 297 - 304
  • [26] The generalized maximum belief entropy model
    Li, Siran
    Cai, Rui
    SOFT COMPUTING, 2022, 26 (09) : 4187 - 4198
  • [27] Maximum entropy in the generalized moment problem
    Frontini, M
    Tagliani, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6706 - 6714
  • [28] Generalized maximum-entropy sampling
    Lee, Jon
    Lind, Joy
    INFOR, 2020, 58 (02) : 168 - 181
  • [29] Empirical Maximum Entropy methods
    Grendar, M.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 419 - 424
  • [30] MAXIMUM-ENTROPY METHODS
    PONMAN, TJ
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1984, 221 (01): : 72 - 76