A Multi-Scale Liver Tumor Segmentation Method Based on Residual and Hybrid Attention Enhanced Network with Contextual Integration

被引:1
|
作者
Sun, Liyan [1 ]
Jiang, Linqing [1 ]
Wang, Mingcong [1 ]
Wang, Zhenyan [1 ]
Xin, Yi [1 ]
机构
[1] Changchun Univ, Coll Comp Sci & Technol, 6543 Satellite Rd, Changchun 130022, Peoples R China
关键词
liver and tumor segmentation; u-net; hybrid attention mechanism; multi-feature extraction; HEPATOCELLULAR-CARCINOMA; IMAGE;
D O I
10.3390/s24175845
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Liver cancer is one of the malignancies with high mortality rates worldwide, and its timely detection and accurate diagnosis are crucial for improving patient prognosis. To address the limitations of traditional image segmentation techniques and the U-Net network in capturing fine image features, this study proposes an improved model based on the U-Net architecture, named RHEU-Net. By replacing traditional convolution modules in the encoder and decoder with improved residual modules, the network's feature extraction capabilities and gradient stability are enhanced. A Hybrid Gated Attention (HGA) module is integrated before the skip connections, enabling the parallel processing of channel and spatial attentions, optimizing the feature fusion strategy, and effectively replenishing image details. A Multi-Scale Feature Enhancement (MSFE) layer is introduced at the bottleneck, utilizing multi-scale feature extraction technology to further enhance the expression of receptive fields and contextual information, improving the overall feature representation effect. Testing on the LiTS2017 dataset demonstrated that RHEU-Net achieved Dice scores of 95.72% for liver segmentation and 70.19% for tumor segmentation. These results validate the effectiveness of RHEU-Net and underscore its potential for clinical application.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] SPA-UNet: A liver tumor segmentation network based on fused multi-scale features
    Li, Weikun
    Jia, Maoning
    Yang, Chen
    Lin, Zhenyuan
    Yu, Yuekang
    Zhang, Wenhui
    OPEN LIFE SCIENCES, 2023, 18 (01):
  • [32] Semantic Segmentation Network of Pathological Images of Liver Tissue Based on Multi-scale Feature and Attention Mechanism
    Zhang A.
    Kang Y.
    Wu Z.
    Cui L.
    Bu Q.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (04): : 375 - 384
  • [33] MRASFusion: A multi-scale residual attention infrared and visible image fusion network based on semantic segmentation guidance
    An, Rongsheng
    Liu, Gang
    Qian, Yao
    Xing, Mengliang
    Tang, Haojie
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [34] MSHANet: a multi-scale residual network with hybrid attention for motor imagery EEG decoding
    Li, Mengfan
    Li, Jundi
    Zheng, Xiao
    Ge, Jiahao
    Xu, Guizhi
    COGNITIVE NEURODYNAMICS, 2024, : 3463 - 3476
  • [35] Multi-scale camouflaged feature mining and fusion network for liver tumor segmentation
    Yang, Lei
    Zhang, Jiawei
    Wang, Tao
    Feng, Qianjin
    Fu, Sirui
    Huang, Meiyan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [36] A Multi-Scale Hybrid Attention Network for Sentence Segmentation Line Detection in Dongba Scripture
    Xing, Junyao
    Bi, Xiaojun
    Weng, Yu
    MATHEMATICS, 2023, 11 (15)
  • [37] A hybrid attention multi-scale fusion network for real-time semantic segmentation
    Ye, Baofeng
    Xue, Renzheng
    Wu, Qianlong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] DRDA-Net: Deep Residual Dual-Attention Network with Multi-Scale Approach for Enhancing Liver and Tumor Segmentation from CT Images
    Idress, Wail M.
    Zhao, Yuqian
    Abouda, Khalid A.
    Yang, Shaodi
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [39] MARes-Net: multi-scale attention residual network for jaw cyst image segmentation
    Ding, Xiaokang
    Jiang, Xiaoliang
    Zheng, Huixia
    Shi, Hualuo
    Wang, Ban
    Chan, Sixian
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [40] MRFA-Net: Kidney Segmentation Method Based on Multi-Scale Feature Fusion and Residual Full Attention
    Chen, Junlin
    Fan, Hongbo
    Shao, Dangguo
    Dai, Shuting
    APPLIED SCIENCES-BASEL, 2024, 14 (06):