A Multi-Scale Liver Tumor Segmentation Method Based on Residual and Hybrid Attention Enhanced Network with Contextual Integration

被引:1
|
作者
Sun, Liyan [1 ]
Jiang, Linqing [1 ]
Wang, Mingcong [1 ]
Wang, Zhenyan [1 ]
Xin, Yi [1 ]
机构
[1] Changchun Univ, Coll Comp Sci & Technol, 6543 Satellite Rd, Changchun 130022, Peoples R China
关键词
liver and tumor segmentation; u-net; hybrid attention mechanism; multi-feature extraction; HEPATOCELLULAR-CARCINOMA; IMAGE;
D O I
10.3390/s24175845
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Liver cancer is one of the malignancies with high mortality rates worldwide, and its timely detection and accurate diagnosis are crucial for improving patient prognosis. To address the limitations of traditional image segmentation techniques and the U-Net network in capturing fine image features, this study proposes an improved model based on the U-Net architecture, named RHEU-Net. By replacing traditional convolution modules in the encoder and decoder with improved residual modules, the network's feature extraction capabilities and gradient stability are enhanced. A Hybrid Gated Attention (HGA) module is integrated before the skip connections, enabling the parallel processing of channel and spatial attentions, optimizing the feature fusion strategy, and effectively replenishing image details. A Multi-Scale Feature Enhancement (MSFE) layer is introduced at the bottleneck, utilizing multi-scale feature extraction technology to further enhance the expression of receptive fields and contextual information, improving the overall feature representation effect. Testing on the LiTS2017 dataset demonstrated that RHEU-Net achieved Dice scores of 95.72% for liver segmentation and 70.19% for tumor segmentation. These results validate the effectiveness of RHEU-Net and underscore its potential for clinical application.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] MSAR-Net: A multi-scale attention residual network for medical image segmentation
    Li, Xiaoheng
    Chen, Cheng
    Chen, Yunqing
    Yu, Ming-an
    Xiao, Ruoxiu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [22] MSML-AttUNet: A hierarchical attention network with multi-scale and multi-task for precision liver tumor segmentation
    Hu, Zhentao
    Chen, Hongyu
    Hua, Long
    Ren, Xing
    Mei, Weiqiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [23] Desert classification based on a multi-scale residual network with an attention mechanism
    Weng, Liguo
    Wang, Lexuan
    Xia, Min
    Shen, Huixiang
    Liu, Jia
    Xu, Yiqing
    GEOSCIENCES JOURNAL, 2021, 25 (03) : 387 - 399
  • [24] Desert classification based on a multi-scale residual network with an attention mechanism
    Liguo Weng
    Lexuan Wang
    Min Xia
    Huixiang Shen
    Jia Liu
    Yiqing Xu
    Geosciences Journal, 2021, 25 : 387 - 399
  • [25] Attention based multi-scale nested network for biomedical image segmentation
    Cheng, Dapeng
    Deng, Jia
    Xiao, Jinjie
    Yanyan, Mao
    Kang, Jialong
    Gai, Jiale
    Zhang, Baosheng
    Zhao, Feng
    HELIYON, 2024, 10 (14)
  • [26] Semantic segmentation of urban building surface materials using multi-scale contextual attention network
    Xu, Fan
    Wong, Man Sing
    Zhu, Rui
    Heo, Joon
    Shi, Guoqiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 158 - 168
  • [27] RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images
    Jiang, Linfeng
    Ou, Jiajie
    Liu, Ruihua
    Zou, Yangyang
    Xie, Ting
    Xiao, Hanguang
    Bai, Ting
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [28] A Multi-Scale Channel Attention Network for Prostate Segmentation
    Ding, Meiwen
    Lin, Zhiping
    Lee, Chau Hung
    Tan, Cher Heng
    Huang, Weimin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (05) : 1754 - 1758
  • [29] A Multi-Scale Contextual Information Enhancement Network for Crack Segmentation
    Zhang, Lili
    Liao, Yang
    Wang, Gaoxu
    Chen, Jun
    Wang, Huibin
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [30] Semantic Segmentation Method Based on Residual and Multi-Scale Feature Fusion
    Xiu, Chunbo
    Su, Huan
    Su, Xuemiao
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2078 - 2083