The Gromov-Wasserstein Distance Between Spheres

被引:0
|
作者
Arya, Shreya [1 ]
Auddy, Arnab [2 ]
Clark, Ranthony A. [3 ]
Lim, Sunhyuk [4 ]
Memoli, Facundo [5 ]
Packer, Daniel [5 ]
机构
[1] Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
[3] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27710 USA
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
[5] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Gromov-Wasserstein distances; Metric geometry; Metric-measure spaces; Optimal transport; Monge maps; SHAPE;
D O I
10.1007/s10208-024-09678-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Wasserstein distance-a generalization of the usual Wasserstein distance-permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov-Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov-Wasserstein distance, we determine the precise value of a certain variant of the Gromov-Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family {dGWp,q}p,q=1 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}<^>{\infty }$$\end{document} of Gromov-Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance dGW4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{{{\text {GW}}}4,2}$$\end{document} between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
引用
收藏
页数:56
相关论文
共 50 条
  • [41] Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
    Xu, Hongteng
    Luo, Dixin
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] Aligning individual brains with Fused Unbalanced Gromov-Wasserstein
    Thual, Alexis
    Tran, Huy
    Zemskova, Tatiana
    Courty, Nicolas
    Flamary, Remi
    Dehaene, Stanislas
    Thirion, Bertrand
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [43] The Ultrametric Gromov–Wasserstein Distance
    Facundo Mémoli
    Axel Munk
    Zhengchao Wan
    Christoph Weitkamp
    Discrete & Computational Geometry, 2023, 70 : 1378 - 1450
  • [44] Distributed IoT Community Detection via Gromov-Wasserstein Metric
    Chang, Shih Yu
    Chen, Yi
    Kao, Yi-Chih
    Chen, Hsiao-Hwa
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13281 - 13298
  • [45] DeepACG: Co-Saliency Detection via Semantic-aware Contrast Gromov-Wasserstein Distance
    Zhang, Kaihua
    Dong, Mingliang
    Liu, Bo
    Yuan, Xiao-Tong
    Liu, Qingshan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13698 - 13707
  • [46] On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line
    Beinert, Robert
    Heiss, Cosmas
    Steidl, Gabriele
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (02): : 1028 - 1032
  • [47] Breaking Isometric Ties and Introducing Priors in Gromov-Wasserstein Distances
    Demetci, Pinar
    Quang Huy Tran
    Redko, Ievgen
    Singh, Ritambhara
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [48] GROMOV-WASSERSTEIN DISTANCES: ENTROPIC REGULARIZATION, DUALITY AND SAMPLE COMPLEXITY
    Zhang, Zhengxin
    Goldfeld, Ziv
    Mroueh, Youssef
    Sriperumbudur, Bharath K.
    ANNALS OF STATISTICS, 2024, 52 (04): : 1616 - 1645
  • [49] A Gromov-Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening
    Chen, Yifan
    Yao, Rentian
    Yang, Yun
    Chen, Jie
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [50] Weakly-Supervised Temporal Action Alignment Driven by Unbalanced Spectral Fused Gromov-Wasserstein Distance
    Luo, Dixin
    Wang, Yutong
    Yue, Angxiao
    Xu, Hongteng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,