The Gromov-Wasserstein Distance Between Spheres

被引:0
|
作者
Arya, Shreya [1 ]
Auddy, Arnab [2 ]
Clark, Ranthony A. [3 ]
Lim, Sunhyuk [4 ]
Memoli, Facundo [5 ]
Packer, Daniel [5 ]
机构
[1] Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
[3] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27710 USA
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
[5] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Gromov-Wasserstein distances; Metric geometry; Metric-measure spaces; Optimal transport; Monge maps; SHAPE;
D O I
10.1007/s10208-024-09678-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Wasserstein distance-a generalization of the usual Wasserstein distance-permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov-Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov-Wasserstein distance, we determine the precise value of a certain variant of the Gromov-Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family {dGWp,q}p,q=1 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}<^>{\infty }$$\end{document} of Gromov-Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance dGW4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{{{\text {GW}}}4,2}$$\end{document} between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
引用
收藏
页数:56
相关论文
共 50 条
  • [31] Learning Graphons via Structured Gromov-Wasserstein Barycenters
    Xu, Hongteng
    Luo, Dixin
    Carin, Lawrence
    Zha, Hongyuan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10505 - 10513
  • [32] Improving Hyperbolic Representations via Gromov-Wasserstein Regularization
    Yang, Yifei
    Lee, Wonjun
    Zou, Dongmian
    Lerman, Gilad
    COMPUTER VISION-ECCV 2024, PT LXXXII, 2025, 15140 : 211 - 227
  • [33] Gromov-Wasserstein Multi-modal Alignment and Clustering
    Gong, Fengjiao
    Nie, Yuzhou
    Xu, Hongteng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 603 - 613
  • [34] Scalable Gromov-Wasserstein Based Comparison of Biological Time Series
    Kravtsova, Natalia
    McGee II, Reginald L. L.
    Dawes, Adriana T.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2023, 85 (08)
  • [35] Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
    Brogat-Motte, Luc
    Flamary, Remi
    Brouard, Celine
    Rousu, Juho
    d'Alche-Buc, Florence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [36] Gromov-Wasserstein Learning for Graph Matching and Node Embedding
    Xu, Hongteng
    Luo, Dixin
    Zha, Hongyuan
    Carin, Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [37] Multi-marginal Gromov-Wasserstein transport and barycentres
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04) : 2720 - 2752
  • [38] Outlier-Robust Gromov-Wasserstein for Graph Data
    Kong, Lemin
    Li, Jiajin
    Tang, Jianheng
    So, Anthony Man-Cho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Generalized Spectral Clustering via Gromov-Wasserstein Learning
    Chowdhury, Samir
    Needham, Tom
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 712 - +
  • [40] Orthogonal Gromov-Wasserstein Discrepancy with Efficient Lower Bound
    Jin, Hongwei
    Yu, Zishun
    Zhang, Xinhua
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 917 - 927