The Gromov-Wasserstein Distance Between Spheres

被引:0
|
作者
Arya, Shreya [1 ]
Auddy, Arnab [2 ]
Clark, Ranthony A. [3 ]
Lim, Sunhyuk [4 ]
Memoli, Facundo [5 ]
Packer, Daniel [5 ]
机构
[1] Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
[3] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27710 USA
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
[5] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Gromov-Wasserstein distances; Metric geometry; Metric-measure spaces; Optimal transport; Monge maps; SHAPE;
D O I
10.1007/s10208-024-09678-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Wasserstein distance-a generalization of the usual Wasserstein distance-permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov-Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov-Wasserstein distance, we determine the precise value of a certain variant of the Gromov-Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family {dGWp,q}p,q=1 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}<^>{\infty }$$\end{document} of Gromov-Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance dGW4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{{{\text {GW}}}4,2}$$\end{document} between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] The Ultrametric Gromov-Wasserstein Distance
    Memoli, Facundo
    Munk, Axel
    Wan, Zhengchao
    Weitkamp, Christoph
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1378 - 1450
  • [2] On a Linear Gromov-Wasserstein Distance
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7292 - 7305
  • [3] The Gromov-Wasserstein Distance: A Brief Overview
    Memoli, Facundo
    AXIOMS, 2014, 3 (03): : 335 - 341
  • [4] Fused Gromov-Wasserstein Distance for Structured Objects
    Vayer, Titouan
    Chapel, Laetitia
    Flamary, Remi
    Tavenard, Romain
    Courty, Nicolas
    ALGORITHMS, 2020, 13 (09)
  • [5] A brief survey on Computational Gromov-Wasserstein distance
    Zheng, Lei
    Xiao, Yang
    Niu, Lingfeng
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 697 - 702
  • [6] The Gromov-Wasserstein distance between networks and stable network invariants
    Chowdhury, Samir
    Memoli, Facundo
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 757 - 787
  • [7] Gromov-Wasserstein Averaging of Kernel and Distance Matrices
    Peyre, Gabriel
    Cuturi, Marco
    Solomon, Justin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [8] Sliced Gromov-Wasserstein
    Vayer, Titouan
    Flamary, Remi
    Tavenard, Romain
    Chapel, Laetitia
    Courty, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Quantized Gromov-Wasserstein
    Chowdhury, Samir
    Miller, David
    Needham, Tom
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 811 - 827
  • [10] Classification of atomic environments via the Gromov-Wasserstein distance
    Kawano, Sakura
    Mason, Jeremy K.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188