Certain paracontact metrics satisfying gradient ρ-Ricci-Bourguignon almost solitons

被引:0
|
作者
Dey, Santu [1 ]
Ali, Akram [2 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 713304, West Bengal, India
[2] King Khalid Univ, Dept Math, Abha 62529, Saudi Arabia
关键词
Para-Sasakian manifold; (kappa; mu)-paracontact manifold; paracontact metric manifolds; rho-Ricci-Bourguignon almost soliton; Einstein manifold; harmonic vector field; 2ND-ORDER PARALLEL TENSORS; ETA-RICCI; EINSTEIN; MANIFOLDS; GEOMETRY;
D O I
10.1142/S0219887824502888
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we thoroughly study rho-Ricci-Bourguignon almost soliton and gradient rho-Ricci-Bourguignon almost soliton in the paracontact geometry, precisely, on K-paracontact and para-Sasakian manifolds. Here, we prove that if the metric g of the K-paracontact manifold endows a rho-Ricci-Bourguignon almost soliton with the nonzero potential vector field V parallel to xi, then the manifold is an Einstein with Einstein constant -2n. Next, we show that if a para-Sasakian manifold represents a gradient rho-Ricci-Bourguignon almost soliton, then the manifold is an Einstein with constant scalar curvature -2n(2n + 1). We also discuss rho-Ricci-Bourguignon almost soliton on (kappa,mu)-paracontact manifold.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Ricci Solitons and Gradient Ricci Solitons on N(k)-Paracontact Manifolds
    Chand, De Uday
    Mandal, Krishanu
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 307 - 320
  • [42] On Ricci-Bourguignon solitons: Triviality, uniqueness and scalar curvature estimates
    Cunha, Antonio W.
    Lemos, Raquel
    Roing, Fernanda
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [43] Solitons of η-Ricci-Bourguignon Type on Submanifolds in (LCS)m Manifolds
    Yan, Lixu
    Vandana
    Siddiqui, Aliya Naaz
    Yoldas, Halil Ibrahim
    Li, Yanlin
    SYMMETRY-BASEL, 2024, 16 (06):
  • [44] Some results on h-almost Ricci-Bourguignon soliton
    Shahroud Azami
    Afrika Matematika, 2022, 33
  • [45] ALMOST YAMABE SOLITON AND ALMOST RICCI-BOURGUIGNON SOLITON WITH GEODESIC VECTOR FIELDS
    Azami, Shahroud
    MATEMATICKI VESNIK, 2024, 76 (03): : 210 - 217
  • [46] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589
  • [47] Ricci almost solitons satisfying certain conditions on the potential vector field
    Ghosh, Amalendu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2): : 103 - 110
  • [48] Geometry of almost Ricci solitons on paracontact metric manifolds
    Ali, Akram
    Mofarreh, Fatemah
    Patra, Dhriti Sundar
    QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1167 - 1180
  • [49] Characterization of sequential warped product gradient Ricci-Bourguignon soliton
    Pahan, Sampa
    Dutta, Souvik
    FILOMAT, 2023, 37 (27) : 9273 - 9285
  • [50] A note on the triviality of gradient solitons of the Ricci–Bourguignon flow
    Antonio W. Cunha
    Antonio N. Silva Junior
    Eudes L. De Lima
    Henrique F. De Lima
    Archiv der Mathematik, 2023, 120 : 89 - 98