Certain paracontact metrics satisfying gradient ρ-Ricci-Bourguignon almost solitons

被引:0
|
作者
Dey, Santu [1 ]
Ali, Akram [2 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 713304, West Bengal, India
[2] King Khalid Univ, Dept Math, Abha 62529, Saudi Arabia
关键词
Para-Sasakian manifold; (kappa; mu)-paracontact manifold; paracontact metric manifolds; rho-Ricci-Bourguignon almost soliton; Einstein manifold; harmonic vector field; 2ND-ORDER PARALLEL TENSORS; ETA-RICCI; EINSTEIN; MANIFOLDS; GEOMETRY;
D O I
10.1142/S0219887824502888
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we thoroughly study rho-Ricci-Bourguignon almost soliton and gradient rho-Ricci-Bourguignon almost soliton in the paracontact geometry, precisely, on K-paracontact and para-Sasakian manifolds. Here, we prove that if the metric g of the K-paracontact manifold endows a rho-Ricci-Bourguignon almost soliton with the nonzero potential vector field V parallel to xi, then the manifold is an Einstein with Einstein constant -2n. Next, we show that if a para-Sasakian manifold represents a gradient rho-Ricci-Bourguignon almost soliton, then the manifold is an Einstein with constant scalar curvature -2n(2n + 1). We also discuss rho-Ricci-Bourguignon almost soliton on (kappa,mu)-paracontact manifold.
引用
收藏
页数:19
相关论文
共 50 条