Deep learning based speckle image super-resolution for digital image correlation measurement

被引:2
|
作者
Wang, Lianpo [1 ,2 ]
Lei, Zhaoyang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Software, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Digital image correlation; Image super resolution; Deep learning; Attention mechanism; NETWORK;
D O I
10.1016/j.optlastec.2024.111746
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital image correlation (DIC) is a non-contact deformation measurement method based on speckle matching, widely used in experimental mechanics, explosive mechanics, construction measurement and other fields. However, when the DIC method uses a small resolution camera to measure large-sized objects, the resolution of speckle images will decrease. This not only leads to a decrease in the resolution of the measured deformation field, but also reduces the speckle size in the image, resulting in a decrease in measurement accuracy. To improve the resolution of the speckle image, we propose a deep learning-based speckle image super-resolution approach, named Speckle-SRGAN. Speckle-SRGAN is designed based on the high-frequency and fine texture characteristics of speckle images, and it introduces coordinate attention mechanism and global depth residual module to preserve high-frequency and fine textures. Low resolution speckle images are processed by Speckle-SRGAN to transform into high-resolution speckle images with high fidelity. Simulation and experimental results show that Speckle-SRGAN can increase the resolution of speckle image by 4 times and the speckle is smooth without loss of details. The real experiment also shows that using our method to preprocess speckle images can reduce the measurement error of traditional DIC methods by about 0.01 pixels. The code and data of this paper is released at: https://github.com/LianpoWang/ SpeckleSRGAN.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [22] Learning Deep Analysis Dictionaries for Image Super-Resolution
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6633 - 6648
  • [23] Deep Learning for Image/Video Restoration and Super-resolution
    Tekalp, A. Murat
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2022, 13 (01): : 1 - 110
  • [24] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [25] Deep Bilateral Learning for Stereo Image Super-Resolution
    Xu, Qingyu
    Wang, Longguang
    Wang, Yingqian
    Sheng, Weidong
    Deng, Xinpu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 613 - 617
  • [26] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [27] Endoscopic Image Deblurring and Super-Resolution Reconstruction Based on Deep Learning
    Yang, Xirui
    Chen, Yue
    Tao, Rui
    Zhang, Yue
    Liu, Zhiwen
    Shi, Yonggang
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 168 - 172
  • [28] An improved method for single image super-resolution based on deep learning
    Chao Xie
    Ying Liu
    Weili Zeng
    Xiaobo Lu
    Signal, Image and Video Processing, 2019, 13 : 557 - 565
  • [29] Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning
    Pan Mengxue
    Qu Ning
    Xia Yeru
    Yang Deyong
    Wang Hongyu
    Liu Wenlong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [30] Image super-resolution reconstruction based on sparse representation and deep learning
    Zhang, Jing
    Shao, Minhao
    Yu, Lulu
    Li, Yunsong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 87