Algebraic network reconstruction of discrete dynamical systems

被引:0
|
作者
Harrington, Heather A. [1 ,2 ,3 ]
Stillman, Mike [4 ]
Veliz-Cuba, Alan [5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Tech Univ Dresden, Max Planck Inst Mol Cell Biol & Genet, Ctr Syst Biol Dresden, Dresden, Germany
[3] Tech Univ Dresden, Fac Math, Dresden, Germany
[4] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
[5] Univ Dayton, Dept Math, Dayton, OH USA
基金
英国工程与自然科学研究理事会;
关键词
21;
D O I
10.1016/j.aam.2024.102760
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a computational algebra solution to reverse engineering the network structure of discrete dynamical systems from data. We use pseudomonomial ideals to determine dependencies between variables that encode constraints on the possible wiring diagrams underlying the process generating the discrete-time, continuous-space data. Our work assumes that each variable is either monotone increasing or decreasing. We prove that with enough data, even in the presence of small noise, our method can reconstruct the correct unique wiring diagram (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] On fuzzifications of discrete dynamical systems
    Kupka, Jiri
    INFORMATION SCIENCES, 2011, 181 (13) : 2858 - 2872
  • [42] On Nonautonomous Discrete Dynamical Systems
    Thakkar, Dhaval
    Das, Ruchi
    INTERNATIONAL JOURNAL OF ANALYSIS, 2014,
  • [43] Discrete dynamical systems -: Foreword
    Alsedà, L
    Llibre, J
    Misiurewicz, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (09): : 1685 - 1686
  • [44] Systoles in discrete dynamical systems
    Fernandes, Sara
    Gracio, Clara
    Ramos, Carlos Correia
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 63 : 129 - 139
  • [45] Fault reconstruction and fault tolerant control design for a network of dynamical systems
    Zhu, Fanglai
    Shan, Yu
    Zhang, Jiancheng
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (01) : 198 - 215
  • [46] Numeration and discrete dynamical systems
    V. Berthé
    Computing, 2012, 94 : 369 - 387
  • [47] Conductance in discrete dynamical systems
    Fernandes, S.
    Gracio, C.
    Ramos, C.
    NONLINEAR DYNAMICS, 2010, 61 (03) : 435 - 442
  • [48] An algebraic approach to design of discrete systems
    Fujimoto, Y
    Sekiguchi, T
    IECON 2000: 26TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4: 21ST CENTURY TECHNOLOGIES AND INDUSTRIAL OPPORTUNITIES, 2000, : 2608 - 2613
  • [49] ADART: An Adaptive Algebraic Reconstruction Algorithm for Discrete Tomography
    Javier Maestre-Deusto, F.
    Scavello, Giovanni
    Pizarro, Joaquin
    Galindo, Pedro L.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (08) : 2146 - 2152
  • [50] Standard systems of discrete differentiable dynamical systems
    Dai, XP
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (06) : 561 - 587