Algebraic network reconstruction of discrete dynamical systems

被引:0
|
作者
Harrington, Heather A. [1 ,2 ,3 ]
Stillman, Mike [4 ]
Veliz-Cuba, Alan [5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Tech Univ Dresden, Max Planck Inst Mol Cell Biol & Genet, Ctr Syst Biol Dresden, Dresden, Germany
[3] Tech Univ Dresden, Fac Math, Dresden, Germany
[4] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
[5] Univ Dayton, Dept Math, Dayton, OH USA
基金
英国工程与自然科学研究理事会;
关键词
21;
D O I
10.1016/j.aam.2024.102760
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a computational algebra solution to reverse engineering the network structure of discrete dynamical systems from data. We use pseudomonomial ideals to determine dependencies between variables that encode constraints on the possible wiring diagrams underlying the process generating the discrete-time, continuous-space data. Our work assumes that each variable is either monotone increasing or decreasing. We prove that with enough data, even in the presence of small noise, our method can reconstruct the correct unique wiring diagram (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:23
相关论文
共 50 条