Life cycle assessment of greenhouse gas emissions and carbon mitigation methods in probiotic-fed broiler production

被引:0
|
作者
Chin, H. W. [1 ]
Tee, T. P. [1 ]
Tan, N. P. [2 ]
机构
[1] Univ Putra Malaysia, Fac Agr, Dept Anim Sci, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Fac Agr, Dept Land Management, Upm Serdang 43400, Selangor, Malaysia
关键词
biochar; emission intensity; greenhouse gas emission; life cycle assessment; Malaysia; mitigation; poultry manure; probiotic-fed broiler; CLIMATE-CHANGE; POULTRY; LIVESTOCK; NITROGEN; BIOCHAR; PERFORMANCE; AMMONIA; PHOSPHORUS; RUMINANTS;
D O I
10.1071/AN24040
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Context Livestock production contributes significantly to global anthropogenic greenhouse gas emissions. Probiotic-fed broiler production has been shown to reduce greenhouse emissions in other nations significantly, however, outcomes in Malaysia are unknown.Aims This study assesses the total greenhouse emissions of probiotic-fed broiler production from cradle to farm-gate using an accredited Life Cycle Assessment (LCA) tool, Greenhouse Accounting Framework (GAF). It determines the hotspot of greenhouse emissions and emission intensity of the farm in kg CO2-eq/kg liveweight. Three types of mitigation methods, i.e. selling untreated manure, composting, and conversion into biochar, were compared to identify their effectiveness.Methods The research involves three broiler houses with one production cycle. Fifty-four gas samples and 90 poultry litter samples were collected throughout the production cycle and analysed for the targeted gases - i.e. carbon dioxide, methane, nitrogen and volatile solid composition. Analysis results were used to estimate total greenhouse emissions from the farm using the LCA-GAF model. The mitigation efficiency achieved by selling untreated manure, composting, and biochar production is assessed by estimating the carbon stock mass.Key results A new LCA model based on probiotic-fed broiler production was generated, specifically using data obtained from the experiment. The experimental results indicated that energy consumption, i.e. electricity and fuel, have the highest greenhouse emissions (44%), followed by feed production with 40% of the total 53.51 t CO2-eq/house/cycle in the probiotic-fed broiler farm. The emissions intensity of the farm is 1.57 kg CO2-eq/kg liveweight. Estimates of the mitigation efficiency were compared among untreated manure, biochar, and compost.Conclusions Energy consumption, particularly electricity and fuel, contributed the highest greenhouse emissions in the probiotic-fed broiler production. The strategy of selling untreated poultry litter was the most effective carbon mitigation method. However, due to its adverse environmental and human health impacts, converting poultry litter into biochar is the preferable mitigation option.Implications This study is profound for the poultry industry and environmental sustainability. It highlights the crucial role of energy consumption in greenhouse emissions from the probiotic-fed broiler farm, and the necessity of addressing the environmental impacts. Implementing sustainable agricultural practices could lead to more ecological poultry production, contributing to global efforts in climate change mitigation. Livestock production plays a major role in global greenhouse gas emissions, and the impacts of using probiotics in broiler production is a new area of study in Malaysia. This research conducted on three broiler farms, reveals that energy consumption, particularly electricity and fuel, contributes significantly to greenhouse gas emissions. The findings highlight the potential of probiotics in reducing greenhouse gas emissions in broiler production and developing sustainable practices in the poultry industry to address environmental concerns.This article belongs to the Collection Sustainable Animal Agriculture for Developing Countries 2023.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Life cycle assessment of greenhouse gas emissions associated with production and consumption of peanut butter in the U.S.
    McCarty, James A., 1741, American Society of Agricultural and Biological Engineers (57):
  • [42] Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study
    Mc Geough, E. J.
    Little, S. M.
    Janzen, H. H.
    McAllister, T. A.
    McGinn, S. M.
    Beauchemin, K. A.
    JOURNAL OF DAIRY SCIENCE, 2012, 95 (09) : 5164 - 5175
  • [43] Variability and Uncertainty in Life Cycle Assessment Models for Greenhouse Gas Emissions from Canadian Oil Sands Production
    Brandt, Adam R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) : 1253 - 1261
  • [44] Assessing the greenhouse gas mitigation potential of urban precincts with hybrid life cycle assessment
    Yu, Man
    Wiedmann, Thomas
    Langdon, Sarah
    JOURNAL OF CLEANER PRODUCTION, 2021, 279
  • [45] Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment
    Hou, Jun
    Zhang, Weifeng
    Wang, Pei
    Dou, Zhengxia
    Gao, Liwei
    Styles, David
    ENERGIES, 2017, 10 (02)
  • [46] Assessing the life cycle greenhouse gas emissions of biorefineries
    Sokka, Laura
    Soimakallio, Sampo
    LIFE CYCLE ASSESSMENT OF PRODUCTS AND TECHNOLOGIES, 2009, 262 : 17 - 26
  • [47] Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs
    Sherman, Jodi
    Le, Cathy
    Lamers, Vanessa
    Eckelman, Matthew
    ANESTHESIA AND ANALGESIA, 2012, 114 (05): : 1086 - 1090
  • [48] Assessing the greenhouse gas mitigation potential of urban precincts with hybrid life cycle assessment
    Yu, Man
    Wiedmann, Thomas
    Langdon, Sarah
    Yu, Man (man.yu@unsw.edu.au), 1600, Elsevier Ltd (279):
  • [49] Greenhouse gas emissions and mitigation options for German wine production
    Ponstein, Helena J.
    Meyer-Aurich, Andreas
    Prochnow, Annette
    JOURNAL OF CLEANER PRODUCTION, 2019, 212 : 800 - 809
  • [50] ASSESSMENT AND MITIGATION OF GREENHOUSE GAS EMISSIONS FROM GROUNDWATER IRRIGATION
    Kaur, Samanpreet
    Aggarwal, Rajan
    Lal, Rattan
    IRRIGATION AND DRAINAGE, 2016, 65 (05) : 762 - 770