Decoding machine learning in nursing research: A scoping review of effective algorithms

被引:0
|
作者
Choi, Jeeyae [1 ]
Lee, Hanjoo [2 ]
Kim-Godwin, Yeounsoo [1 ]
机构
[1] Univ North Carolina Wilmington, Coll Hlth & Human Serv, Sch Nursing, 601 South Coll Rd, Wilmington, NC 28403 USA
[2] Univ North Carolina Chapel Hill, Sch Med, Joint Biomed Engn Dept, Chapel Hill, NC USA
关键词
artificial intelligence; machine learning; machine learning algorithms; performance validation; scoping review; MEDICAL-EDUCATION-RESEARCH; HEALTH-CARE; ARTIFICIAL-INTELLIGENCE; QUALITY;
D O I
10.1111/jnu.13026
中图分类号
R47 [护理学];
学科分类号
1011 ;
摘要
Introduction: The rapid evolution of artificial intelligence (AI) technology has revolutionized healthcare, particularly through the integration of AI into health information systems. This transformation has significantly impacted the roles of nurses and nurse practitioners, prompting extensive research to assess the effectiveness of AI-integrated systems. This scoping review focuses on machine learning (ML) used in nursing, specifically investigating ML algorithms, model evaluation methods, areas of focus related to nursing, and the most effective ML algorithms. Design: The scoping review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. Methods: A structured search was performed across seven databases according to PRISMA-ScR: PubMed, EMBASE, CINAHL, Web of Science, OVID, PsycINFO, and ProQuest. The quality of the final reviewed studies was assessed using the Medical Education Research Study Quality Instrument (MERSQI). Results: Twenty-six articles published between 2019 and 2023 met the inclusion and exclusion criteria, and 46% of studies were conducted in the US. The average MERSQI score was 12.2, indicative of moderate- to high-quality studies. The most used ML algorithm was Random Forest. The four second-most used were logistic regression, least absolute shrinkage and selection operator, decision tree, and support vector machine. Most ML models were evaluated by calculating sensitivity (recall)/specificity, accuracy, receiver operating characteristic (ROC), area under the ROC (AUROC), and positive/negative prediction value (precision). Half of the studies focused on nursing staff or students and hospital readmission or emergency department visits. Only 11 articles reported the most effective ML algorithm(s). Conclusion:The scoping review provides insights into the current status of ML research in nursing and recognition of its significance in nursing research, confirming the benefits of ML in healthcare. Recommendations include incorporating experimental designs in research studies to optimize the use of ML models across various nursing domains.
引用
收藏
页码:119 / 129
页数:11
相关论文
共 50 条
  • [31] A scoping review of nursing workforce planning and forecasting research
    Squires, Allison
    Jylha, Virpi
    Jun, Jin
    Ensio, Anneli
    Kinnunen, Juha
    JOURNAL OF NURSING MANAGEMENT, 2017, 25 (08) : 587 - 596
  • [32] Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review
    Khosravi, Bardia
    Rouzrokh, Pouria
    Faghani, Shahriar
    Moassefi, Mana
    Vahdati, Sanaz
    Mahmoudi, Elham
    Chalian, Hamid
    Erickson, Bradley J.
    DIAGNOSTICS, 2022, 12 (10)
  • [33] Decoding Intracranial EEG With Machine Learning: A Systematic Review
    Mirchi, Nykan
    Warsi, Nebras M.
    Zhang, Frederick
    Wong, Simeon M.
    Suresh, Hrishikesh
    Mithani, Karim
    Erdman, Lauren
    Ibrahim, George M.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [34] Artificial intelligence and machine learning in cardiotocography: A scoping review
    Aeberhard, Jasmin L.
    Radan, Anda-Petronela
    Delgado-Gonzalo, Ricard
    Strahm, Karin Maya
    Sigurthorsdottir, Halla Bjorg
    Schneider, Sophie
    Surbek, Daniel
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2023, 281 : 54 - 62
  • [35] Multimodal machine learning in precision health: A scoping review
    Adrienne Kline
    Hanyin Wang
    Yikuan Li
    Saya Dennis
    Meghan Hutch
    Zhenxing Xu
    Fei Wang
    Feixiong Cheng
    Yuan Luo
    npj Digital Medicine, 5
  • [36] Predicting population health with machine learning: a scoping review
    Morgenstern, Jason Denzil
    Buajitti, Emmalin
    O'Neill, Meghan
    Piggott, Thomas
    Goel, Vivek
    Fridman, Daniel
    Kornas, Kathy
    Rosella, Laura C.
    BMJ OPEN, 2020, 10 (10):
  • [37] The use of machine learning in rare diseases: a scoping review
    Schaefer, Julia
    Lehne, Moritz
    Schepers, Josef
    Prasser, Fabian
    Thun, Sylvia
    ORPHANET JOURNAL OF RARE DISEASES, 2020, 15 (01)
  • [38] Deep Learning Algorithms in EEG Signal Decoding Application: A Review
    Vallabhaneni, Ramesh Babu
    Sharma, Pankaj
    Kumar, Vinit
    Kulshreshtha, Vyom
    Reddy, Koya Jeevan
    Kumar, S. Selva
    Kumar, V. Sandeep
    Bitra, Surendra Kumar
    IEEE ACCESS, 2021, 9 (09): : 125778 - 125786
  • [39] A scoping review of robustness concepts for machine learning in healthcare
    Balendran, Alan
    Beji, Celine
    Bouvier, Florie
    Khalifa, Ottavio
    Evgeniou, Theodoros
    Ravaud, Philippe
    Porcher, Raphael
    NPJ DIGITAL MEDICINE, 2025, 8 (01):
  • [40] Machine Learning for Child Oral Health: A Scoping Review
    Mohajeri, Amir
    Schlaud, Samantha
    Spector, Sydnee
    Hung, Man
    APPLIED SCIENCES-BASEL, 2024, 14 (23):