Invariant Tori for Area-Preserving Maps with Ultra-differentiable Perturbation and Liouvillean Frequency

被引:0
|
作者
Cheng, Hongyu [1 ]
Wang, Fenfen [2 ,3 ]
Wang, Shimin [4 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
[3] Sichuan Normal Univ, Laurent Math Ctr, Chengdu 610066, Peoples R China
[4] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Invariant tori; Ultra-differentiability; Arithmetic condition; Liouvillean frequency; QUASI-PERIODIC MAPS; PARAMETERIZATION METHOD; REDUCIBILITY; COMPUTATION; CONTINUITY; WHISKERS;
D O I
10.1007/s12346-024-01143-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of invariant tori to the area-preserving maps defined on R2xT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {R}<^>2\times \mathbb {T} $$\end{document}x<overline>=F(x,theta),theta<overline>=theta+alpha(alpha is an element of R\Q),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \overline{x}=F(x,\theta ), \qquad \overline{\theta }=\theta +\alpha \, \,(\alpha \in \mathbb {R} {\setminus }\mathbb {Q}), \end{aligned}$$\end{document}where F is related to a linear rotation, and the perturbation is ultra-differentiable in theta is an element of T,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta \in \mathbb {T},$$\end{document} which is very closed to C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document} regularity. Moreover, we assume that the frequency alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any irrational number without other arithmetic conditions and the smallness of the perturbation does not depend on alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Thus, both the difficulties from the ultra-differentiability of the perturbation and Liouvillean frequency will appear in this work. The proof of the main result is based on the Kolmogorov-Arnold-Moser (KAM) scheme about the area-preserving maps with some new techniques.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] On the Invariant Cantor Sets of Period Doubling Type of Infinitely Renormalizable Area-Preserving Maps
    Lilja, Dan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (03) : 1027 - 1039
  • [32] FRACTAL BOUNDARY FOR THE EXISTENCE OF INVARIANT CIRCLES FOR AREA-PRESERVING MAPS - OBSERVATIONS AND RENORMALIZATION EXPLANATION
    KETOJA, JA
    MACKAY, RS
    PHYSICA D, 1989, 35 (03): : 318 - 334
  • [33] Controllability for a class of area-preserving twist maps
    Vaidya, U
    Mezic, I
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 234 - 246
  • [34] Creation of coherent structures in area-preserving maps
    Gupte, Neelima
    Sharma, Ashutosh
    PHYSICS LETTERS A, 2007, 365 (04) : 295 - 300
  • [35] NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS
    BERRETTI, A
    CELLETTI, A
    CHIERCHIA, L
    FALCOLINI, C
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) : 1613 - 1630
  • [36] RIGIDITY FOR INFINITELY RENORMALIZABLE AREA-PRESERVING MAPS
    Gaidashev, D.
    Johnson, T.
    Martens, M.
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (01) : 129 - 159
  • [37] Secondary nontwist phenomena in area-preserving maps
    Vieira Abud, C.
    Caldas, I. L.
    CHAOS, 2012, 22 (03)
  • [38] Transport properties in nontwist area-preserving maps
    Szezech, J. D., Jr.
    Caldas, I. L.
    Lopes, S. R.
    Viana, R. L.
    Morrison, P. J.
    CHAOS, 2009, 19 (04)
  • [39] DIFFUSION IN MODELS OF MODULATED AREA-PRESERVING MAPS
    BAZZANI, A
    SIBONI, S
    TURCHETTI, G
    VAIENTI, S
    PHYSICAL REVIEW A, 1992, 46 (10): : 6754 - 6756
  • [40] Visualization of Topological Structures in Area-Preserving Maps
    Tricoche, Xavier
    Garth, Christoph
    Sanderson, Allen
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 1765 - 1774