Invariant Tori for Area-Preserving Maps with Ultra-differentiable Perturbation and Liouvillean Frequency

被引:0
|
作者
Cheng, Hongyu [1 ]
Wang, Fenfen [2 ,3 ]
Wang, Shimin [4 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
[3] Sichuan Normal Univ, Laurent Math Ctr, Chengdu 610066, Peoples R China
[4] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Invariant tori; Ultra-differentiability; Arithmetic condition; Liouvillean frequency; QUASI-PERIODIC MAPS; PARAMETERIZATION METHOD; REDUCIBILITY; COMPUTATION; CONTINUITY; WHISKERS;
D O I
10.1007/s12346-024-01143-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of invariant tori to the area-preserving maps defined on R2xT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {R}<^>2\times \mathbb {T} $$\end{document}x<overline>=F(x,theta),theta<overline>=theta+alpha(alpha is an element of R\Q),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \overline{x}=F(x,\theta ), \qquad \overline{\theta }=\theta +\alpha \, \,(\alpha \in \mathbb {R} {\setminus }\mathbb {Q}), \end{aligned}$$\end{document}where F is related to a linear rotation, and the perturbation is ultra-differentiable in theta is an element of T,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta \in \mathbb {T},$$\end{document} which is very closed to C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document} regularity. Moreover, we assume that the frequency alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any irrational number without other arithmetic conditions and the smallness of the perturbation does not depend on alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Thus, both the difficulties from the ultra-differentiability of the perturbation and Liouvillean frequency will appear in this work. The proof of the main result is based on the Kolmogorov-Arnold-Moser (KAM) scheme about the area-preserving maps with some new techniques.
引用
收藏
页数:35
相关论文
共 50 条