A bidirectional broadband multifunctional terahertz device based on vanadium dioxide

被引:0
|
作者
Li, Tong [1 ]
Liang, Xiangan [1 ]
Bao, Chengqing [1 ]
Huang, Pan [1 ]
He, Qian [1 ]
Song, Guofeng [2 ,3 ,4 ]
机构
[1] Changsha Univ Sci & Technol, Changsha 410114, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Xiongan Inst Innovat, Lab Photon Integrated Circuits, Shijiazhuang 071700, Hebei, Peoples R China
关键词
Terahertz; Metamaterial absorber; Vanadium dioxide; Impedance matching offers; WIDE-ANGLE; ABSORBER; GRAPHENE; ABSORPTION; TRANSITION;
D O I
10.1016/j.infrared.2024.105465
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose a switchable and bidirectional metamaterial terahertz absorber/reflector based on vanadium dioxide. Simulation results show that the device can achieve broadband absorption and reflection by adjusting the phase state of vanadium dioxide. When the vanadium dioxide is in the insulating phase, the device can be a perfect bidirectional broadband absorber with more than 90% absorptivity under normal forward/backward TE/ TM-polarized incident wave in the frequency range from 1.9 THz to 10 THz. This excellent absorption characteristic is insensitive to the polarization angle of the incident wave. When the vanadium dioxide is in the metal phase, the device achieves more than 90% reflectivity in the low-frequency range under forward/backward TEpolarized incident wave. In the high-frequency range, the device has both reflection and absorption effects on the TE-polarized wave. When vanadium dioxide is in two different phase states, the performance of device is not sensitive to the electromagnetic wave incidence angle. The change in vanadium dioxide conductivity does not affect the stable performance of the device at high (low) frequencies when used as an absorber (reflector). The proposed device has potential applications in terahertz energy harvesting, detection, sensing, optical switching, and shielding.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Switchable multifunctional terahertz metasurfaces employing vanadium dioxide
    Xike Li
    Shiwei Tang
    Fei Ding
    Shuomin Zhong
    Yuanqing Yang
    Tao Jiang
    Jun Zhou
    Scientific Reports, 9
  • [32] Switchable multifunctional terahertz metasurfaces employing vanadium dioxide
    Li, Xike
    Tang, Shiwei
    Ding, Fei
    Zhong, Shuomin
    Yang, Yuanqing
    Jiang, Tao
    Zhou, Jun
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] Switchable Terahertz Absorber from Single Broadband to Dual Broadband Based on Graphene and Vanadium Dioxide
    Wang, Guan
    Wu, Tong
    Jia, Yang
    Gao, Yang
    Gao, Yachen
    NANOMATERIALS, 2022, 12 (13)
  • [34] Multifunctional metasurface for Terahertz wavefront manipulation based on the combination of vanadium dioxide and graphene
    Zhao, Cuicui
    Yan, Dexian
    Li, Xiangjun
    Zhang, Le
    Li, Jining
    OPTICS AND LASER TECHNOLOGY, 2024, 171
  • [35] Multifunctional manipulation of terahertz waves using vanadium-dioxide-based metagratings
    Li, Jingwen
    Li, Xiao
    Liu, Jiaqing
    Dong, Daxing
    Liu, Youwen
    Fu, Yangyang
    OPTICS LETTERS, 2022, 47 (16) : 4207 - 4210
  • [36] Tunable broadband terahertz absorber based on a simple design of a vanadium dioxide resonator
    Wang, Yunji
    Gu, Yao
    Liu, Fei
    Chen, Lin
    Wang, Xingchao
    Ji, Ke
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2025, 42 (03): : 309 - 314
  • [37] Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene
    Zhang, Chunyu
    Zhang, Heng
    Ling, Fang
    Zhang, Bin
    APPLIED OPTICS, 2021, 60 (16) : 4835 - 4840
  • [38] A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial
    Liu, Yongchen
    Qian, Yixian
    Hu, Fangrong
    Jiang, Mingzhu
    Zhang, Longhui
    RESULTS IN PHYSICS, 2020, 19
  • [39] Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide
    Ye, Longfang
    Chen, Xueer
    Zhu, Chunhui
    Li, Weiwen
    Zhang, Yong
    OPTICS EXPRESS, 2020, 28 (23): : 33948 - 33958
  • [40] Temperature-Controlled and Adjustable Terahertz Device Based on Vanadium Dioxide
    Lu, Wenqiang
    Sun, Hao
    Xuan, Wenjing
    Ding, Yanyan
    Yi, Yougen
    COATINGS, 2024, 14 (04)