BERTRAND'S PARADOX: NEW PROBABILISTIC MODELS

被引:0
|
作者
Vidovic, Zoran [1 ]
机构
[1] Univ Belgrade, Teacher Educ Fac, Kraljice Natalije 43, Belgrade 11000, Serbia
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2024年 / 49卷 / 01期
关键词
Bertrand's paradox; new solutions; Monte Carlo simulations;
D O I
10.46793/KgJMat2501.061V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper two new generating procedure of a random chord are obtained and thereby new solutions of Bertrand's paradox are proposed.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [41] Chemical and Biochemical Models of Parrondo's Paradox
    Osipovitch, Daniel C.
    Gordon, Thomas
    Barratt, Carl
    Schwartz, Pauline M.
    FASEB JOURNAL, 2009, 23
  • [42] A Regression Paradox for Linear Models: Sufficient Conditions and Relation to Simpson's Paradox
    Chen, Aiyou
    Bengtsson, Thomas
    Ho, Tin Kam
    AMERICAN STATISTICIAN, 2009, 63 (03): : 218 - 225
  • [43] Yule-Simpson's paradox: the probabilistic versus the empirical conundrum
    Spanos, Aris
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (02): : 605 - 635
  • [44] Group dynamics in experimental studies-The Bertrand Paradox revisited
    Bruttel, Lisa V.
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2009, 69 (01) : 51 - 63
  • [45] A new solution to Cartwright's paradox
    Garcia-Carpintero, M
    CRITICA-REVISTA HISPANOAMERICANA DE FILOSOFIA, 2000, 32 (95): : 47 - 70
  • [46] A New Solution to Moore's Paradox
    Anthony S. Gillies
    Philosophical Studies, 2001, 105 : 237 - 250
  • [47] A new solution to Moore's paradox
    Gillies, AS
    PHILOSOPHICAL STUDIES, 2001, 105 (03) : 237 - 250
  • [48] A new discriminative kernel from probabilistic models
    Tsuda, K
    Kawanabe, M
    Rätsch, G
    Sonnenburg, S
    Müller, KR
    NEURAL COMPUTATION, 2002, 14 (10) : 2397 - 2414
  • [49] Bertrand's break
    不详
    TPM-THE PHILOSOPHERS MAGAZINE, 2006, (33): : 92 - 93
  • [50] Bertrand's break
    Russell, Bertrand
    TPM-THE PHILOSOPHERS MAGAZINE, 2005, (32): : 90 - 91