BERTRAND'S PARADOX: NEW PROBABILISTIC MODELS

被引:0
|
作者
Vidovic, Zoran [1 ]
机构
[1] Univ Belgrade, Teacher Educ Fac, Kraljice Natalije 43, Belgrade 11000, Serbia
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2024年 / 49卷 / 01期
关键词
Bertrand's paradox; new solutions; Monte Carlo simulations;
D O I
10.46793/KgJMat2501.061V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper two new generating procedure of a random chord are obtained and thereby new solutions of Bertrand's paradox are proposed.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [31] MONTE-CARLO METHOD AND BERTRAND PARADOX
    GUTER, RS
    MURATOVA, TA
    INDUSTRIAL LABORATORY, 1970, 36 (05): : 741 - &
  • [32] Sluggish consumers: An evolutionary solution to the Bertrand paradox
    Hehenkamp, B
    GAMES AND ECONOMIC BEHAVIOR, 2002, 40 (01) : 44 - 76
  • [33] THE BERTRAND PARADOX, THE USELESS AUCTIONEER AND THE LAUNHARDT MODEL
    Lambertini, Luca
    Mosca, Manuela
    AUSTRALIAN ECONOMIC PAPERS, 2014, 53 (3-4) : 170 - 183
  • [34] Bertrand's paradox: a physical way out along the lines of Buffon's needle throwing experiment
    Di Porto, P.
    Crosignani, B.
    Ciattoni, A.
    Liu, H. C.
    EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (03) : 819 - 825
  • [35] Simpson's Paradox in Survival Models
    Di Serio, Clelia
    Rinott, Yosef
    Scarsini, Marco
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (03) : 463 - 480
  • [36] A PROBABILISTIC PARADOX - DISCUSSION
    DITLEVSEN, O
    JOURNAL OF THE ENGINEERING MECHANICS DIVISION-ASCE, 1981, 107 (04): : 729 - 731
  • [37] A PROBABILISTIC PARADOX - DISCUSSION
    KESSLER, E
    JOURNAL OF THE ENGINEERING MECHANICS DIVISION-ASCE, 1981, 107 (06): : 1253 - 1253
  • [38] New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    Riglioni, D.
    GROUP 28: PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRY: PROCEEDINGS OF THE 28TH INTERNATIONAL COLLOQUIUM ON GROUP-THEORETICAL METHODS IN PHYSICS, 2011, 284
  • [39] Yule–Simpson’s paradox: the probabilistic versus the empirical conundrum
    Aris Spanos
    Statistical Methods & Applications, 2021, 30 : 605 - 635
  • [40] New trends in probabilistic graphical models
    Gámez, JA
    Salmerón, A
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004, 12 : V - VI