BERTRAND'S PARADOX: NEW PROBABILISTIC MODELS

被引:0
|
作者
Vidovic, Zoran [1 ]
机构
[1] Univ Belgrade, Teacher Educ Fac, Kraljice Natalije 43, Belgrade 11000, Serbia
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2024年 / 49卷 / 01期
关键词
Bertrand's paradox; new solutions; Monte Carlo simulations;
D O I
10.46793/KgJMat2501.061V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper two new generating procedure of a random chord are obtained and thereby new solutions of Bertrand's paradox are proposed.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [1] A NEW SOLUTION OF BERTRAND?S PARADOX?
    KAUSHIK, P.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (01) : 158 - 160
  • [2] On Bertrand's paradox
    Bangu, Sorin
    ANALYSIS, 2010, 70 (01) : 30 - 35
  • [3] Bertrand's paradox revisited
    Holbrook, J
    Kim, SS
    MATHEMATICAL INTELLIGENCER, 2000, 22 (04): : 16 - 19
  • [4] Bertrand’s paradox revisited
    John Holbrook
    Sung soo Kim
    The Mathematical Intelligencer, 2000, 22 : 16 - 19
  • [5] Defusing Bertrand's Paradox
    Gyenis, Zalan
    Redei, Miklos
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2015, 66 (02): : 349 - 373
  • [6] Bertrand's paradox and the principle of indifference
    Shackel, Nicholas
    PHILOSOPHY OF SCIENCE, 2007, 74 (02) : 150 - 175
  • [7] BRENTANO'S SOLUTION TO BERTRAND'S PARADOX
    Shackel, Nicholas
    REVUE ROUMAINE DE PHILOSOPHIE, 2024, 68 (01):
  • [8] Bertrand’s paradox: is there anything else?
    Vesna Jevremovic
    Marko Obradovic
    Quality & Quantity, 2012, 46 : 1709 - 1714
  • [9] Bertrand's paradox: is there anything else?
    Jevremovic, Vesna
    Obradovic, Marko
    QUALITY & QUANTITY, 2012, 46 (06) : 1709 - 1714
  • [10] Bertrand's Paradox Revisited: Why Bertrand's 'Solutions' Are All Inapplicable†
    Rowbottom, Darrell P.
    PHILOSOPHIA MATHEMATICA, 2013, 21 (01) : 110 - 114