Field investigation on thermal comfort of metro passengers in hot summer and warm winter zone of China: A case study in Guangzhou

被引:5
|
作者
Chen, Zihao [1 ]
Xie, Xinze [1 ]
Hu, Huiming [1 ]
Zhou, Xuanxuan [1 ]
Yang, Yadie [4 ]
Song, Wenfang [1 ,2 ,3 ]
Luh, Ding Bang [1 ]
Li, Xin [1 ]
机构
[1] Guangdong Univ Technol, Sch Art & Design, Guangzhou 510000, Peoples R China
[2] Guangdong Univ Technol, Lab Human Thermophysiol & Ergon, Guangzhou 510000, Peoples R China
[3] Guangdong Univ Technol, Smart Med Innovat Technol Ctr, Guangzhou 510000, Peoples R China
[4] Hong Kong Polytech Univ, Sch Fash & Text, Hunghom, Hong Kong, Peoples R China
关键词
Field study; Thermal comfort; Metro environment; Initial metabolic rates; METABOLIC-RATE; VENTILATION; TRANSITION; TEMPERATURE; ENVIRONMENT; TRANSPORT; RESPONSES; STATIONS; GENDER;
D O I
10.1016/j.enbuild.2024.114633
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the hot summer and warm winter zone of China, the metro thermal environments and passengers' thermal comfort were rarely examined, influencing factors such as commuter hours and individual factors were less discussed, and understanding them was beneficial for improving human thermal comfort and saving energy. In this study, a field study was undertaken in Guangzhou located in the region during the summer of 2023. Four metro stations and three metro lines were selected, a total of 1481 valid questionnaires were gathered. The results revealed that the metro thermal environment was highly commendable during the hot summer months, with a thermal acceptability vote (TAV) ranging from 81 % to 89 % across the entrance (ET), concourse (CC), platform (PF), and carriage (CR). Furthermore, the upper limit of the 80 % acceptance range for operative temperature (T-op) was 29.11 degrees C in the ET, 27.82 degrees C in the CC, 29.13 degrees C in the PF, and 28.44 degrees C in the CR. These temperatures exceed the actual mean T-op values in these locations, indicating there is a significant potential for energy savings in metro environments. The upper limits of T-op values for passengers with low, medium and high metabolic rates are 30.34 degrees C, 28.92 degrees C, and 28.25 degrees C, respectively. Thermal sensation votes (TSVs) fell well within the comfort zone specified in ISO 7730 (-0.7 < PMV < 0.7) during both peak and off-peak hours. No difference was found in TSVs between the two genders and among the different ages.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] THERMAL ENVIRONMENT COUPLED SIMULATION AND ANALYSIS OF A TEACHING BUILDING IN SUMMER IN HOT SUMMER AND COLD WINTER ZONE IN CHINA
    Jiang, X. B.
    Yang, C. Z.
    Liu, Z. H.
    Meng, N.
    Yang, J. J.
    Zhang, Q. L.
    Hu, W. L.
    7TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, PROCEEDINGS OF ISHVAC 2011, VOLS I-IV, 2011, : 147 - 152
  • [42] Reducing Energy Consumption and Improving Comfort by Retrofitting Residential Buildings in the Hot Summer and Cold Winter Zone of China
    Tsang, Christopher
    Spentzou, Eftychia
    Lomas, Kevin J.
    He, Miaomiao
    JOURNAL OF ARCHITECTURAL ENGINEERING, 2022, 28 (04)
  • [43] Reducing Energy Consumption and Improving Comfort by Retrofitting Residential Buildings in the Hot Summer and Cold Winter Zone of China
    Tsang, Christopher
    Spentzou, Eftychia
    Lomas, Kevin J.
    He, Miaomiao
    Journal of Architectural Engineering, 2022, 28 (04):
  • [44] Investigation on building external insulation facade system energy saving techniques in 'hot summer/warm winter' zone
    Li, Zhi-Sheng
    Lu, Shao-Hui
    Zhang, Guo-Qiang
    Li, Li-Xin
    Mei, Sheng
    Li, Dong-Mei
    Journal of Harbin Institute of Technology (New Series), 2007, 14 (SUPPL.) : 51 - 53
  • [45] Research Progress of Composite Thermal Insulation Wall in Hot Summer and Cold Winter Zone of China
    Liu, Hongmei
    Wu, Chengqun
    Xu, Yuanbin
    Zhu, Aidong
    ADVANCED CONSTRUCTION TECHNOLOGIES, 2014, 919-921 : 1725 - +
  • [46] Suitability evaluation of four thermal insulation solutions in hot summer and cold winter zone in China
    Hua, Xin-ruo
    Shen, Xiao-mei
    HIGH PERFORMANCE STRUCTURES AND MATERIALS ENGINEERING, PTS 1 AND 2, 2011, 217-218 : 652 - 655
  • [47] Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China
    Liu, Hong
    Wu, Yuxin
    Li, Baizhan
    Cheng, Yong
    Yao, Runming
    ENERGY AND BUILDINGS, 2017, 140 : 9 - 18
  • [48] Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China
    Yu, Jinghua
    Yang, Changzhi
    Tian, Liwei
    Liao, Dan
    APPLIED ENERGY, 2009, 86 (10) : 1970 - 1985
  • [49] Comparison of thermal comfort in different kinds of building spaces: Field study in Guangzhou, China
    Wu, Peihao
    Zhang, Yuchun
    Fang, Zhaosong
    Gao, Yafeng
    INDOOR AND BUILT ENVIRONMENT, 2022, 31 (01) : 186 - 202
  • [50] The influence of thermal insulation on the energy cost of space cooling of high-rise residential buildings in the hot summer and warm winter zone of China
    Ye, GD
    Hua, B
    Hu, WB
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON HEAT TRANSFER ENHANCEMENT AND ENERGY CONSERVATION, VOLS 1 AND 2, 2004, : 1377 - 1382