Likelihood-based inference for semi-parametric transformation cure models with interval censored data

被引:0
|
作者
Pal, Suvra [1 ,2 ]
Barui, Sandip [3 ]
机构
[1] Univ Texas Arlington, Dept Math, Arlington, TX USA
[2] Univ Texas Arlington, Coll Sci, Div Data Sci, Arlington, TX USA
[3] Indian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, West Bengal, India
基金
美国国家卫生研究院;
关键词
Box-Cox transformation; EM algorithm; Piecewise linear approximation; Simultaneous-maximization; Smoking cessation; Unified cure models; PROPORTIONAL HAZARDS; SURVIVAL-DATA; MIXTURE MODEL; EM ALGORITHM; REGRESSION; LIFETIMES;
D O I
10.1080/03610918.2024.2393702
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A simple yet effective way of modeling survival data with cure fraction is by considering Box-Cox transformation cure model (BCTM) that unifies mixture and promotion time cure models. In this article, we numerically study the statistical properties of the BCTM when applied to interval censored data. Time-to-events associated with susceptible subjects are modeled through proportional hazards structure that allows for non-homogeneity across subjects, where the baseline hazard function is estimated by distribution-free piecewise linear function with varied degrees of non-parametricity. Due to missing cured statuses for right censored subjects, maximum likelihood estimates of model parameters are obtained by developing an expectation-maximization (EM) algorithm. Under the EM framework, the conditional expectation of the complete data log-likelihood function is maximized by considering all parameters (including the Box-Cox transformation parameter alpha) simultaneously, in contrast to conventional profile-likelihood technique of estimating alpha. The robustness and accuracy of the model and estimation method are established through a detailed simulation study under various parameter settings, and an analysis of real-life data obtained from a smoking cessation study.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance
    Jaspers, Stijn
    Aerts, Marc
    Verbeke, Geert
    Beloeil, Pierre-Alexandre
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 30 - 42
  • [42] A likelihood-based approach for cure regression models
    Burke, Kevin
    Patilea, Valentin
    TEST, 2021, 30 (03) : 693 - 712
  • [43] Semi-parametric transformation boundary regression models
    Neumeyer, Natalie
    Selk, Leonie
    Tillier, Charles
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1287 - 1315
  • [44] Specification testing in semi-parametric transformation models
    Kloodt, Nick
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    TEST, 2021, 30 (04) : 980 - 1003
  • [45] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    TEST, 2021, 30 : 980 - 1003
  • [46] Semi-parametric pairwise inference methods in spatial models based on copulas
    Quessy, Jean-Francois
    Rivest, Louis-Paul
    Toupin, Marie-Helene
    SPATIAL STATISTICS, 2015, 14 : 472 - 490
  • [47] A likelihood-based approach for cure regression models
    Kevin Burke
    Valentin Patilea
    TEST, 2021, 30 : 693 - 712
  • [48] Semiparametric transformation models for interval-censored data in the presence of a cure fraction
    Chen, Chyong-Mei
    Shen, Pao-sheng
    Huang, Wei-Lun
    BIOMETRICAL JOURNAL, 2019, 61 (01) : 203 - 215
  • [49] Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models
    Xiuli Wang
    Gaorong Li
    Lu Lin
    Metrika, 2011, 73 : 171 - 185
  • [50] Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models
    Wang, Xiuli
    Li, Gaorong
    Lin, Lu
    METRIKA, 2011, 73 (02) : 171 - 185