Semi-parametric transformation boundary regression models

被引:0
|
作者
Neumeyer, Natalie [1 ]
Selk, Leonie [1 ]
Tillier, Charles [1 ]
机构
[1] Univ Hamburg, Dept Math, Bundesstr 55, D-20146 Hamburg, Germany
关键词
Box– Cox transformations; Frontier estimation; Minimum distance estimation; Local constant approximation; Boundary models; Nonparametric regression; Yeo– Johnson transformations; NONPARAMETRIC REGRESSION; ASYMPTOTIC EQUIVALENCE;
D O I
10.1007/s10463-019-00731-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of nonparametric regression models with one-sided errors, we consider parametric transformations of the response variable in order to obtain independence between the errors and the covariates. In view of estimating the transformation parameter, we use a minimum distance approach and show the uniform consistency of the estimator under mild conditions. The boundary curve, i.e., the regression function, is estimated applying a smoothed version of a local constant approximation for which we also prove the uniform consistency. We deal with both cases of random covariates and deterministic (fixed) design points. To highlight the applicability of the procedures and to demonstrate their performance, the small sample behavior is investigated in a simulation study using the so-called Yeo-Johnson transformations.
引用
收藏
页码:1287 / 1315
页数:29
相关论文
共 50 条
  • [1] Semi-parametric transformation boundary regression models
    Natalie Neumeyer
    Leonie Selk
    Charles Tillier
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1287 - 1315
  • [2] Specification testing in semi-parametric transformation models
    Kloodt, Nick
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    TEST, 2021, 30 (04) : 980 - 1003
  • [3] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    TEST, 2021, 30 : 980 - 1003
  • [4] Measurement errors in semi-parametric generalised regression models
    Hattab, Mohammad W.
    Ruppert, David
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (04) : 344 - 363
  • [5] Semi-parametric nonlinear regression and transformation using functional networks
    Castillo, Enrique
    Hadi, Ali S.
    Lacruz, Beatriz
    Pruneda, Rosa E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2129 - 2157
  • [6] A new algorithm for fitting semi-parametric variance regression models
    Robledo, Kristy P.
    Marschner, Ian C.
    COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2313 - 2335
  • [7] A new algorithm for fitting semi-parametric variance regression models
    Kristy P. Robledo
    Ian C. Marschner
    Computational Statistics, 2021, 36 : 2313 - 2335
  • [8] Variable selection in finite mixture of semi-parametric regression models
    Ormoz, Ehsan
    Eskandari, Farzad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 695 - 711
  • [9] Interpretable semi-parametric regression models with defined error bounds
    Otte, Clemens
    NEUROCOMPUTING, 2014, 143 : 1 - 6
  • [10] A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
    Chen, Song Xi
    Van Keilegom, Ingrid
    BERNOULLI, 2009, 15 (04) : 955 - 976