Adaptive Kalman Filtering Based on Model Parameter Ratios

被引:3
|
作者
Ge, Quanbo [1 ]
Li, Yunyu [2 ]
Wang, Yuanliang [3 ]
Hu, Xiaoming [4 ]
Li, Hong [5 ]
Sun, Changyin [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Syst Sci & Control Engn, Sch Automat, Hangzhou 310018, Peoples R China
[3] Shanghai Maritime Univ, Sch Logist Engn, Shanghai 200135, Peoples R China
[4] KTH Royal Inst Technol, Stockholm 10044, Sweden
[5] Chinese Flight Test Estab, Inst Testing, Xian 710089, Peoples R China
[6] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise measurement; Kalman filters; Q measurement; Estimation; Adaptation models; Covariance matrices; Time measurement; Estimation error; inaccurate models; Kalman filter (KF); model parameter ratio (MPR); particle swarm optimization (PSO); RANKING;
D O I
10.1109/TAC.2024.3376306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies an adaptive Kalman filter method based on model parameter ratio. The model parameter ratio theory is proposed for the first time, and the adaptive estimation problem is transformed into a constrained optimization problem. Compared with the existing Sage-Husa adaptive filtering algorithm, it can be seen that the application of this theory can more accurately estimate the process noise covariance and measurement noise covariance matrix, so that the algorithm has better filtering accuracy and better state estimation performance, At the same time, it is also better in antidivergence and sensitivity to initial conditions.
引用
收藏
页码:6230 / 6237
页数:8
相关论文
共 50 条
  • [41] Research of Optimized Adaptive Kalman Filtering
    Xu Fuzhen
    Su Yongqing
    Liu Hao
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1210 - 1214
  • [42] AN ADAPTIVE ROBUSTIZING APPROACH TO KALMAN FILTERING
    KOVACEVIC, BD
    DUROVIC, ZM
    CONTROL AND COMPUTERS, 1994, 22 (01): : 7 - 11
  • [44] An optimization approach to adaptive Kalman filtering
    Karasalo, Maja
    Hu, Xiaoming
    AUTOMATICA, 2011, 47 (08) : 1785 - 1793
  • [45] Distributed Kalman Filtering With Adaptive Communication
    Selvi, Daniela
    Battistelli, Giorgio
    IEEE CONTROL SYSTEMS LETTERS, 2025, 9 : 15 - 20
  • [46] ADAPTIVE KALMAN FILTERING USED TO COMPENSATE FOR MODEL ERRORS IN MULTICOMPONENT METHODS
    RUTAN, SC
    BROWN, SD
    ANALYTICA CHIMICA ACTA, 1984, 160 (JUN) : 99 - 119
  • [48] Adaptive Kalman filtering for INS GPS
    Mohamed, AH
    Schwarz, KP
    JOURNAL OF GEODESY, 1999, 73 (04) : 193 - 203
  • [49] Adaptive Kalman filtering of colored noise
    Xiong, SS
    Zhou, ZY
    ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 755 - 758
  • [50] ADAPTIVE KALMAN FILTERING - A SIMULATION RESULT
    SASIADEK, JZ
    WOJCIK, PJ
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1988, 110 (01): : 104 - 107