Adaptive Kalman Filtering Based on Model Parameter Ratios

被引:3
|
作者
Ge, Quanbo [1 ]
Li, Yunyu [2 ]
Wang, Yuanliang [3 ]
Hu, Xiaoming [4 ]
Li, Hong [5 ]
Sun, Changyin [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Syst Sci & Control Engn, Sch Automat, Hangzhou 310018, Peoples R China
[3] Shanghai Maritime Univ, Sch Logist Engn, Shanghai 200135, Peoples R China
[4] KTH Royal Inst Technol, Stockholm 10044, Sweden
[5] Chinese Flight Test Estab, Inst Testing, Xian 710089, Peoples R China
[6] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise measurement; Kalman filters; Q measurement; Estimation; Adaptation models; Covariance matrices; Time measurement; Estimation error; inaccurate models; Kalman filter (KF); model parameter ratio (MPR); particle swarm optimization (PSO); RANKING;
D O I
10.1109/TAC.2024.3376306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies an adaptive Kalman filter method based on model parameter ratio. The model parameter ratio theory is proposed for the first time, and the adaptive estimation problem is transformed into a constrained optimization problem. Compared with the existing Sage-Husa adaptive filtering algorithm, it can be seen that the application of this theory can more accurately estimate the process noise covariance and measurement noise covariance matrix, so that the algorithm has better filtering accuracy and better state estimation performance, At the same time, it is also better in antidivergence and sensitivity to initial conditions.
引用
收藏
页码:6230 / 6237
页数:8
相关论文
共 50 条
  • [31] Adaptive kalman filtering-based speech enhancement algorithm
    Gabrea, M
    CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING 2001, VOLS I AND II, CONFERENCE PROCEEDINGS, 2001, : 521 - 526
  • [32] Q-Learning Based Adaptive Kalman Filtering With Adaptive Window Length
    Tang, Kun
    Luan, Xiaoli
    Ding, Feng
    Liu, Fei
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2025, 39 (01) : 177 - 186
  • [33] A Measurement-Based Robust Adaptive Kalman Filtering Algorithm
    Chang, Yanhong
    Zhang, Hai
    Zhou, Qifan
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 3773 - 3779
  • [34] Ship steering adaptive robust control based on Kalman filtering
    Yuan, Shichun
    Guo, Chen
    Shen, Zhipeng
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 2189 - 2193
  • [35] Research on adaptive Kalman filtering based on interacting multiple model - art. no. 683324
    Zhang Yong
    Wu Qinzhang
    ELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY V, PTS 1 AND 2, 2008, 6833 : 83324 - 83324
  • [36] Gaussian Mixture Model-Based Ensemble Kalman Filtering for State and Parameter Estimation for a PMMA Process
    Li, Ruoxia
    Prasad, Vinay
    Huang, Biao
    PROCESSES, 2016, 4 (02):
  • [37] Adaptive Kalman Filtering for Target Tracking
    Xiao Feng
    Song Mingyu
    Guo Xin
    Ge Fengxiang
    2016 IEEE/OES CHINA OCEAN ACOUSTICS SYMPOSIUM (COA), 2016,
  • [38] AN ADAPTIVE ROBUSTIZING APPROACH TO KALMAN FILTERING
    TSAI, C
    KURZ, L
    AUTOMATICA, 1983, 19 (03) : 279 - 288
  • [39] Adaptive Kalman Filtering for INS/GPS
    A. H. Mohamed
    K. P. Schwarz
    Journal of Geodesy, 1999, 73 : 193 - 203
  • [40] Adaptive Kalman Filtering by Covariance Sampling
    Assa, Akbar
    Plataniotis, Konstantinos N.
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (09) : 1288 - 1292