Adaptive Kalman Filtering Based on Model Parameter Ratios

被引:3
|
作者
Ge, Quanbo [1 ]
Li, Yunyu [2 ]
Wang, Yuanliang [3 ]
Hu, Xiaoming [4 ]
Li, Hong [5 ]
Sun, Changyin [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Syst Sci & Control Engn, Sch Automat, Hangzhou 310018, Peoples R China
[3] Shanghai Maritime Univ, Sch Logist Engn, Shanghai 200135, Peoples R China
[4] KTH Royal Inst Technol, Stockholm 10044, Sweden
[5] Chinese Flight Test Estab, Inst Testing, Xian 710089, Peoples R China
[6] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise measurement; Kalman filters; Q measurement; Estimation; Adaptation models; Covariance matrices; Time measurement; Estimation error; inaccurate models; Kalman filter (KF); model parameter ratio (MPR); particle swarm optimization (PSO); RANKING;
D O I
10.1109/TAC.2024.3376306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies an adaptive Kalman filter method based on model parameter ratio. The model parameter ratio theory is proposed for the first time, and the adaptive estimation problem is transformed into a constrained optimization problem. Compared with the existing Sage-Husa adaptive filtering algorithm, it can be seen that the application of this theory can more accurately estimate the process noise covariance and measurement noise covariance matrix, so that the algorithm has better filtering accuracy and better state estimation performance, At the same time, it is also better in antidivergence and sensitivity to initial conditions.
引用
收藏
页码:6230 / 6237
页数:8
相关论文
共 50 条
  • [2] CONSISTENCY OF BAYESIAN PARAMETER ESTIMATES IN ADAPTIVE KALMAN FILTERING
    KUZNETSOV, NA
    LUBKOV, AV
    YASHIN, AI
    AUTOMATION AND REMOTE CONTROL, 1981, 42 (04) : 446 - 454
  • [3] Adaptive robust Kalman filtering based on the current statistical model
    Gao, Wei-Guang
    Yang, Yuan-Xi
    Zhang, Shuang-Cheng
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2006, 35 (01): : 15 - 18
  • [4] Adaptive Kalman filtering based on optimal autoregressive predictive model
    Jin, Biao
    Guo, Jiao
    He, Dongjian
    Guo, Wenchuan
    GPS SOLUTIONS, 2017, 21 (02) : 307 - 317
  • [5] Adaptive Kalman filtering based on optimal autoregressive predictive model
    Biao Jin
    Jiao Guo
    Dongjian He
    Wenchuan Guo
    GPS Solutions, 2017, 21 : 307 - 317
  • [6] ADAPTIVE KALMAN FILTERING
    BROWN, SD
    RUTAN, SC
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1985, 90 (06): : 403 - 407
  • [7] ADAPTIVE KALMAN FILTERING
    RUTAN, SC
    ANALYTICAL CHEMISTRY, 1991, 63 (22) : 1103 - 1109
  • [8] AN EXPLORATORY OPTIMIZATION PLUS KALMAN FILTERING BASED METHOD FOR PARAMETER ESTIMATION IN MODEL BASED DIAGNOSTICS
    Rengarajan, Sankar B.
    Bryant, Michael D.
    Choi, Jaewon
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 1, 2012, : 417 - 424
  • [9] Feasibility analysis of the robust adaptive Kalman filtering model
    Huang Zhang-yu
    Chen Xi-qiang
    INTERNATIONAL SYMPOSIUM ON LIDAR AND RADAR MAPPING 2011: TECHNOLOGIES AND APPLICATIONS, 2011, 8286
  • [10] PPG-based Windkessel model parameter identification via unscented Kalman filtering
    Walia, Akhil
    Kaul, Amit
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 42 (02) : 184 - 204