A volumetric approach to Monge's optimal transport on surfaces

被引:0
|
作者
Tsai, Richard [1 ]
Turnquist, Axel G. R. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; BOUNDARY-VALUE PROBLEM; NUMERICAL-SOLUTION; IRREGULAR DOMAINS; DESIGN; INTEGRATION; REGULARITY; LENSES; MAPS;
D O I
10.1016/j.jcp.2024.113352
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in R-3, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, T-epsilon, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on T-epsilon are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for Gamma = S-2 and the 2-torus.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Monge solutions and uniqueness in multi-marginal optimal transport via graph theory
    Pass, Brendan
    Vargas-Jimenez, Adolfo
    ADVANCES IN MATHEMATICS, 2023, 428
  • [32] Monge-Kantorovich optimal transport through constrictions and flow-rate constraints
    Dong, Anqi
    Stephanovitch, Arthur
    Georgiou, Tryphon T.
    AUTOMATICA, 2024, 160
  • [33] Convergence Rates for Discretized Monge–Ampère Equations and Quantitative Stability of Optimal Transport
    Robert J. Berman
    Foundations of Computational Mathematics, 2021, 21 : 1099 - 1140
  • [34] Bacteria display optimal transport near surfaces
    Ipina, Emiliano Perez
    Otte, Stefan
    Pontier-Bres, Rodolphe
    Czerucka, Dorota
    Peruani, Fernando
    NATURE PHYSICS, 2019, 15 (06) : 610 - +
  • [35] Bacteria display optimal transport near surfaces
    Emiliano Perez Ipiña
    Stefan Otte
    Rodolphe Pontier-Bres
    Dorota Czerucka
    Fernando Peruani
    Nature Physics, 2019, 15 : 610 - 615
  • [36] A LEAST-SQUARES METHOD FOR OPTIMAL TRANSPORT USING THE MONGE-AMPERE EQUATION
    Prins, C. R.
    Beltman, R.
    Boonkkamp, J. H. M. ten Thije
    Ijzerman, W. L.
    Tukker, T. W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : B937 - B961
  • [37] Convergence Rates for Discretized Monge-Ampere Equations and Quantitative Stability of Optimal Transport
    Berman, Robert J.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (04) : 1099 - 1140
  • [38] A Multiscale Approach to Optimal Transport
    Merigot, Quentin
    COMPUTER GRAPHICS FORUM, 2011, 30 (05) : 1583 - 1592
  • [39] Monge surfaces and planar geodesic foliations
    Brander, David
    Gravesen, Jens
    JOURNAL OF GEOMETRY, 2018, 109 (01)
  • [40] On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation
    Pratelli, Aldo
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (01): : 1 - 13