A Multiscale Approach to Optimal Transport

被引:173
|
作者
Merigot, Quentin [1 ,2 ]
机构
[1] Univ Grenoble, Lab Jean Kuntzmann, Grenoble, France
[2] CNRS, F-75700 Paris, France
关键词
D O I
10.1111/j.1467-8659.2011.02032.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport problem. We iteratively simplify the target using Lloyd's algorithm, and use the solution of the simplified problem as a rough initial solution to the more complex one. This approach allows for fast estimation of distances between measures related to optimal transport (known as Earth-mover or Wasserstein distances). We also discuss the implementation of these algorithms, and compare the original one to its multiscale counterpart.
引用
收藏
页码:1583 / 1592
页数:10
相关论文
共 50 条
  • [1] Multiscale strategies for computing optimal transport
    1600, Microtome Publishing (18):
  • [2] Multiscale Strategies for Computing Optimal Transport
    Gerber, Samuel
    Maggioni, Mauro
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [3] A Sparse Multiscale Algorithm for Dense Optimal Transport
    Schmitzer, Bernhard
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2016, 56 (02) : 238 - 259
  • [4] A Sparse Multiscale Algorithm for Dense Optimal Transport
    Bernhard Schmitzer
    Journal of Mathematical Imaging and Vision, 2016, 56 : 238 - 259
  • [5] Multiscale approach to electron transport dynamics
    Bustamante, Carlos M.
    Ramirez, Francisco F.
    Sanchez, Cristian G.
    Scherlis, Damian A.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (08):
  • [6] Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants: Multiscale and multidisciplinary approach to understanding nanoparticle transport in plants
    Hubbard J.D.
    Lui A.
    Landry M.P.
    Current Opinion in Chemical Engineering, 2020, 30 : 135 - 143
  • [7] Optimal Control with Random Parameters: A Multiscale Approach
    Bardi, Martino
    Cesaroni, Annalisa
    EUROPEAN JOURNAL OF CONTROL, 2011, 17 (01) : 30 - 45
  • [8] Multiscale approach to spin transport in magnetic multilayers
    Borlenghi, Simone
    Rychkov, Valentin
    Petitjean, Cyril
    Waintal, Xavier
    PHYSICAL REVIEW B, 2011, 84 (03)
  • [9] A Multiscale Semi-Smooth Newton Method for Optimal Transport
    Liu, Yiyang
    Wen, Zaiwen
    Yin, Wotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [10] A Multiscale Semi-Smooth Newton Method for Optimal Transport
    Yiyang Liu
    Zaiwen Wen
    Wotao Yin
    Journal of Scientific Computing, 2022, 91