UPFL: Unsupervised Personalized Federated Learning towards New Clients

被引:0
|
作者
Ye, Tiandi [1 ]
Chen, Cen [1 ]
Wang, Yinggui [2 ]
Li, Xiang [1 ]
Gao, Ming [1 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Ant Grp, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
personalized federated learning; unsupervised learning; heterogeneous federated learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized federated learning (pFL) has gained significant attention as a promising approach to address the challenge of data heterogeneity. In this paper, we address a relatively unexplored problem in federated learning. When a federated model has been trained and deployed, and an unlabeled new client joins, providing a personalized model for the new client becomes a highly challenging task. To address this challenge, we extend the adaptive risk minimization technique into the unsupervised pFL setting and propose our method, FedTTA. We further improve FedTTA with two simple yet highly effective optimization strategies: enhancing the training of the adaptation model with proxy regularization and early-stopping the adaptation through entropy. Moreover, we propose a knowledge distillation loss specifically designed for FedTTA to address the device heterogeneity. Extensive experiments on five datasets against eleven baselines demonstrate the effectiveness of our proposed FedTTA and its variants. The code is available at: https://github.com/anonymous-federated-learning/code.
引用
收藏
页码:851 / 859
页数:9
相关论文
共 50 条
  • [31] Methods and Prospects of Personalized Federated Learning
    Sun, Yanhua
    Wang, Zihang
    Liu, Chang
    Yang, Ruizhe
    Li, Meng
    Wang, Zhuwei
    Computer Engineering and Applications, 2024, 60 (20) : 68 - 83
  • [32] Clustered Graph Federated Personalized Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 744 - 748
  • [33] Reliable and Interpretable Personalized Federated Learning
    Qin, Zixuan
    Yang, Liu
    Wang, Qilong
    Han, Yahong
    Hu, Qinghua
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 20422 - 20431
  • [34] Personalized Federated Learning With Differential Privacy
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9530 - 9539
  • [35] Location prediction with personalized federated learning
    Wang, Shuang
    Wang, Bowei
    Yao, Shuai
    Qu, Jiangqin
    Pan, Yuezheng
    SOFT COMPUTING, 2022, 28 (Suppl 2) : 451 - 451
  • [36] Personalized Federated Learning with Moreau Envelopes
    Dinh, Canh T.
    Tran, Nguyen H.
    Nguyen, Tuan Dung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [37] Personalized Federated Learning with Gaussian Processes
    Achituve, Idan
    Shamsian, Aviv
    Navon, Aviv
    Chechik, Gal
    Fetaya, Ethan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [38] ActPerFL: Active Personalized Federated Learning
    Chen, Huili
    Ding, Jie
    Tramel, Eric
    Wu, Shuang
    Sahu, Anit Kumar
    Avestimehr, Salman
    Zhang, Tao
    PROCEEDINGS OF THE FIRST WORKSHOP ON FEDERATED LEARNING FOR NATURAL LANGUAGE PROCESSING (FL4NLP 2022), 2022, : 1 - 5
  • [39] Federated Learning for Personalized Humor Recognition
    Guo, Xu
    Yu, Han
    Li, Boyang
    Wang, Hao
    Xing, Pengwei
    Feng, Siwei
    Nie, Zaiqing
    Miao, Chunyan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [40] Personalized Federated Learning using Hypernetworks
    Shamsian, Aviv
    Navon, Aviv
    Fetaya, Ethan
    Chechik, Gal
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139